The Pell sequence
Bicknell, N., A primer on the Pell sequence and related sequence, Fibonacci Quart., 13 (4) (1975), 345–349.
Cohn, J. H. E., Perfect Pell powers, Glasgow Math. J., 38 (1996), 19–20.
Dickson, L. E., History of the Theory of Numbers, Vol. I, Divisiblity and Primality, Chelsea Publishing Company, New–York, 1966.
Horadam, A. F., Applications of Modified Pell Numbers to Representations, Ulam Quart., 3 (1994), 34–53.
Kilic, E. and Tasci, D., The linear algebra of the Pell matrix, Bol. Soc. Mat. Mexicana, 11 (2005), 163–174.
Koshy, T., Fibonacci and Lucas Numbers with Applications, Wiley–Interscience Publications, 2001.
Ljunggren, W., Zur Theorie der Gleichung x 2 + 1 = Dy 4, Avh. Norske Vid Akad. Oslo, 5 (1942).
Luca, F., Perfect Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo (2), 49 (2000) 313–318.
Luca, F. and Mignotte, M., ϕ(F 11) =88, Divulgaciones Matemáaticas, (2) 14 (2006) 101–106.
Luca, F. and Nicolae, F., ϕ(Fm) = F n, Integers, 9 (2009), A30.
Luca, F. and Pollack, P., Multiperfect numbers with identical digits, J. Number Theory, 131 (2011), 260–284.
Luca, F. and Stanica, P., Equations with arithmetic functions of Pell numbers, Bull. Math. Soc. Sci. Math. Roumanie. Tome 57(105) No. 4, (2014), 409–413.
Ochem, P. and Rao, M., Odd perfect numbers are greater than 101500, Math. Comp., 81 (2012), no. 279, 1869–1877.
Pethő, A., The Pell sequence contains only trivial perfect powers. Sets, graphs and numbers (Budapest, 1991), 561–568, Colloq. Math. Soc. János Bolyai, 60, North–Holland, Amsterdam, 1992. MR94e:11031.