View More View Less
  • 1 Universidad del Cauca, Calle 5 No 4–70 Popayán, Colombia
  • 2 University of the Witwatersrand, Private Bag X3, Wits 2050, South Africa
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

The Pell sequence (Pn)n=0 is given by the recurrence Pn = 2Pn −1 + Pn −2 with initial condition P 0 = 0, P 1 = 1 and its associated Pell-Lucas sequence (Qn)n=0 is given by the same recurrence relation but with initial condition Q 0 = 2, Q 1 = 2. Here we show that 6 is the only perfect number appearing in these sequences. This paper continues a previous work that searched for perfect numbers in the Fibonacci and Lucas sequences.

  • [1]

    Bicknell, N., A primer on the Pell sequence and related sequence, Fibonacci Quart., 13 (4) (1975), 345349.

  • [2]

    Cohn, J. H. E., Perfect Pell powers, Glasgow Math. J., 38 (1996), 1920.

  • [3]

    Dickson, L. E., History of the Theory of Numbers, Vol. I, Divisiblity and Primality, Chelsea Publishing Company, New–York, 1966.

  • [4]

    Horadam, A. F., Applications of Modified Pell Numbers to Representations, Ulam Quart., 3 (1994), 3453.

  • [5]

    Kilic, E. and Tasci, D., The linear algebra of the Pell matrix, Bol. Soc. Mat. Mexicana, 11 (2005), 163174.

  • [6]

    Koshy, T., Fibonacci and Lucas Numbers with Applications, Wiley–Interscience Publications, 2001.

  • [7]

    Ljunggren, W., Zur Theorie der Gleichung x 2 + 1 = Dy 4, Avh. Norske Vid Akad. Oslo, 5 (1942).

  • [8]

    Luca, F., Perfect Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo (2), 49 (2000) 313318.

  • [9]

    Luca, F. and Mignotte, M., ϕ(F 11) =88, Divulgaciones Matemáaticas, (2) 14 (2006) 101106.

  • [10]

    Luca, F. and Nicolae, F., ϕ(Fm) = F n, Integers, 9 (2009), A30.

  • [11]

    Luca, F. and Pollack, P., Multiperfect numbers with identical digits, J. Number Theory, 131 (2011), 260284.

  • [12]

    Luca, F. and Stanica, P., Equations with arithmetic functions of Pell numbers, Bull. Math. Soc. Sci. Math. Roumanie. Tome 57(105) No. 4, (2014), 409413.

    • Search Google Scholar
    • Export Citation
  • [13]

    Ochem, P. and Rao, M., Odd perfect numbers are greater than 101500, Math. Comp., 81 (2012), no. 279, 18691877.

  • [14]

    Pethő, A., The Pell sequence contains only trivial perfect powers. Sets, graphs and numbers (Budapest, 1991), 561–568, Colloq. Math. Soc. János Bolyai, 60, North–Holland, Amsterdam, 1992. MR94e:11031.

    • Search Google Scholar
    • Export Citation