View More View Less
  • 1 University of Delhi, Delhi–110 007, India
  • 2 University of Delhi, Delhi–110 007, India
  • 3 National Institute of Technology, Tiruchirappalli–620015, India
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

Sufficient conditions on associated parameters p, b and c are obtained so that the generalized and “normalized” Bessel function up(z) = up,b,c(z) satisfies the inequalities ∣(1 + (zup(z)/up(z)))2 − 1∣ < 1 or ∣((zup(z))′/up(z))2 − 1∣ < 1. We also determine the condition on these parameters so that (4(p+(b+1)/2)/c)up'(x)1+z. Relations between the parameters μ and p are obtained such that the normalized Lommel function of first kind hμ,p(z) satisfies the subordination 1+(zhμ,p''(z)/hμ,q'(z))1+z. Moreover, the properties of Alexander transform of the function hμ,p(z) are discussed.

  • [1]

    Baricz, Á., Generalized Bessel functions of the first kind, Lecture Notes in Mathematics, 1994, Springer-Verlag, Berlin, 2010.

  • [2]

    Baricz, Á., Deniz, E., Çağlar, M. and Orhan, H., Differential subordinations involving generalized Bessel functions, Bull. Malays. Math. Sci. Soc., 38 (3) (2015), 12551280.

    • Search Google Scholar
    • Export Citation
  • [3]

    Á. Baricz and Frasin, B. A., Univalence of integral operators involving Bessel functions, Appl. Math. Lett., 23 (4) (2010), 371376.

    • Search Google Scholar
    • Export Citation
  • [4]

    Baricz, Á., Kupán, P. A. and Szász, R., The radius of starlikeness of normalized Bessel functions of the first kind, Proc. Amer. Math. Soc., 142 (6) (2014), 20192025.

    • Search Google Scholar
    • Export Citation
  • [5]

    Baricz, A. and Ponnusamy, S., Starlikeness and convexity of generalized Bessel functions, Integral Transforms Spec. Funct., 21 (9) (2010), 641653.

    • Search Google Scholar
    • Export Citation
  • [6]

    Baricz, A. and Ponnusamy, S., Differential inequalities and Bessel functions, J. Math. Anal. Appl., 400 (2) (2013), 558567.

  • [7]

    Baricz, A. and Yağmur, N., Geometric properties of some Lommel and Struve functions, Ramanujan J., 42 (2) (2017), 325346.

  • [8]

    Bohra, N. and Ravichandran, V., On confluent hypergeometric functions and generalized Bessel functions, Anal. Math., 43 (4) (2017), 533545.

    • Search Google Scholar
    • Export Citation
  • [9]

    Brown, R. K., Univalence of Bessel functions, Proc. Amer. Math. Soc., 11 (1960), 278283.

  • [10]

    Deniz, E., Convexity of integral operators involving generalized Bessel functions, Integral Transforms Spec. Funct., 24 (3) (2013), 201216.

    • Search Google Scholar
    • Export Citation
  • [11]

    Kanas, S., Mondal, S. R. and Mohammed, A. D., Relations between the generalized Bessel functions and the Janowski class, Math. Inequal. Appl., 21 (1) (2018), 165178.

    • Search Google Scholar
    • Export Citation
  • [12]

    Madaan, V., Kumar, A. and Ravichandran, V., Starlikeness associated with lemniscate of Bernoulli, Filomat, 33 (7) (2019), 19371955.

  • [13]

    Miller, S. S. and Mocanu, P. T., Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.

    • Search Google Scholar
    • Export Citation
  • [14]

    Prajapat, J. K., Certain geometric properties of normalized Bessel functions, Appl. Math. Lett., 24 (12) (2011), 21332139.

  • [15]

    Radhika, V., Sivasubramanian, S., Cho, N. E. and Murugusundaramoorthy, G., Geometric properties of Bessel functions for the classes of Janowski starlike and convex functions, J. Comput. Anal. Appl., 25 (3) (2018), 452466.

    • Search Google Scholar
    • Export Citation
  • [16]

    Shanmugam, T. N., Convolution and differential subordination, Internat. J. Math. Math. Sci., 12 (2) (1989), 333340.

  • [17]

    Szász, R., About the radius of starlikeness of Bessel functions of the first kind, Monatsh. Math., 176 (2) (2015), 323330.

  • [18]

    Yağmur, N., Hardy space of Lommel functions, Bull. Korean Math. Soc., 52 (3) (2015), 10351046.