Sufficient conditions on associated parameters p, b and c are obtained so that the generalized and “normalized” Bessel function up(z) = up,b,c(z) satisfies the inequalities ∣(1 + (zu″p(z)/u′p(z)))2 − 1∣ < 1 or ∣((zup(z))′/up(z))2 − 1∣ < 1. We also determine the condition on these parameters so that . Relations between the parameters μ and p are obtained such that the normalized Lommel function of first kind hμ,p(z) satisfies the subordination . Moreover, the properties of Alexander transform of the function hμ,p(z) are discussed.
Baricz, Á., Generalized Bessel functions of the first kind, Lecture Notes in Mathematics, 1994, Springer-Verlag, Berlin, 2010.
Baricz, Á., Deniz, E., Çağlar, M. and Orhan, H., Differential subordinations involving generalized Bessel functions, Bull. Malays. Math. Sci. Soc., 38 (3) (2015), 1255–1280.
Á. Baricz and Frasin, B. A., Univalence of integral operators involving Bessel functions, Appl. Math. Lett., 23 (4) (2010), 371–376.
Baricz, Á., Kupán, P. A. and Szász, R., The radius of starlikeness of normalized Bessel functions of the first kind, Proc. Amer. Math. Soc., 142 (6) (2014), 2019–2025.
Baricz, A. and Ponnusamy, S., Starlikeness and convexity of generalized Bessel functions, Integral Transforms Spec. Funct., 21 (9) (2010), 641–653.
Baricz, A. and Ponnusamy, S., Differential inequalities and Bessel functions, J. Math. Anal. Appl., 400 (2) (2013), 558–567.
Baricz, A. and Yağmur, N., Geometric properties of some Lommel and Struve functions, Ramanujan J., 42 (2) (2017), 325–346.
Bohra, N. and Ravichandran, V., On confluent hypergeometric functions and generalized Bessel functions, Anal. Math., 43 (4) (2017), 533–545.
Brown, R. K., Univalence of Bessel functions, Proc. Amer. Math. Soc., 11 (1960), 278–283.
Deniz, E., Convexity of integral operators involving generalized Bessel functions, Integral Transforms Spec. Funct., 24 (3) (2013), 201–216.
Kanas, S., Mondal, S. R. and Mohammed, A. D., Relations between the generalized Bessel functions and the Janowski class, Math. Inequal. Appl., 21 (1) (2018), 165–178.
Madaan, V., Kumar, A. and Ravichandran, V., Starlikeness associated with lemniscate of Bernoulli, Filomat, 33 (7) (2019), 1937–1955.
Miller, S. S. and Mocanu, P. T., Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.
Prajapat, J. K., Certain geometric properties of normalized Bessel functions, Appl. Math. Lett., 24 (12) (2011), 2133–2139.
Radhika, V., Sivasubramanian, S., Cho, N. E. and Murugusundaramoorthy, G., Geometric properties of Bessel functions for the classes of Janowski starlike and convex functions, J. Comput. Anal. Appl., 25 (3) (2018), 452–466.
Shanmugam, T. N., Convolution and differential subordination, Internat. J. Math. Math. Sci., 12 (2) (1989), 333–340.
Szász, R., About the radius of starlikeness of Bessel functions of the first kind, Monatsh. Math., 176 (2) (2015), 323–330.
Yağmur, N., Hardy space of Lommel functions, Bull. Korean Math. Soc., 52 (3) (2015), 1035–1046.