View More View Less
  • 1 University of Delhi, Delhi-110007, India
  • 2 University of Delhi, Delhi-110007, India
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

In this paper, it has been investigated that how various stronger notions of sensitivity like 𝓕-sensitive, multi-𝓕-sensitive, (𝓕1, 𝓕2)-sensitive, etc., where 𝓕, 𝓕1, 𝓕2 are Furstenberg families, are carried over to countably infinite product of dynamical systems having these properties and vice versa. Similar results are also proved for induced hyperspaces.

  • [1]

    Auslander, J. and Yorke, J. A., Interval maps, factors of maps, and chaos, Tôhoku Math. J., 32 (2), 2 (1980), 177188.

  • [2]

    Değirmenci, N. and Koçak, Ş., Chaos in product maps, Turkish J. Math., 34 (4), (2010), 593600.

  • [3]

    Huang, W., Kolyada, S. and Zhang, G., Auslander-Yorke dichotomy theorem, multi-sensitivity and Lyapunov numbers, arXiv preprint arXiv: 1504.00587 (2016).

    • Search Google Scholar
    • Export Citation
  • [4]

    Jiao, L., Wang, L., Li, F. and Liu, H.v, On multi-sensitivity with respect to a vector, Modern Phys. Lett. B, 32 (15), (2018), 1850166.

    • Search Google Scholar
    • Export Citation
  • [5]

    Li, J., Oprocha, P. and Wu, X., Furstenberg families, sensitivity and the space of probability measures, Nonlinearity, 30 (3), (2017), 9871005.

    • Search Google Scholar
    • Export Citation
  • [6]

    Li, R., A note on stronger forms of sensitivity for dynamical systems, Chaos Solitons Fractals, 45 (6), (2012), 753758.

  • [7]

    Li, R., Zhao, Y., Wang, H., Jiang, R. and Liang, H., F-sensitivity and (F 1, F 2)-sensitivity between dynamical systems and their induced hyperspace dynamical systems, J. Nonlinear Sci. Appl., 10 (4), (2017), 16401651.

    • Search Google Scholar
    • Export Citation
  • [8]

    Li, R. and Zhou, X., A note on chaos in product maps, Turkish J. Math., 37 (4), (2013), 665675.

  • [9]

    Li, T. Y. and Yorke, J. A., Period three implies chaos, Amer. Math. Monthly, 82 (10), (1975), 985992.

  • [10]

    Liu, H., Liao, L. and Wang, L., Thickly syndetical sensitivity of topological dynamical system, Discrete Dyn. Nat. Soc. (2014), Art. ID 583431, 4.

    • Search Google Scholar
    • Export Citation
  • [11]

    Mangang, K., B., Product dynamical systems, Far East J. Dyn. Syst., 24 (2014), 113.

  • [12]

    Mangang, K. B., Mean equicontinuity, sensitivity, expansiveness and distality of product dynamical systems, J. Dyn. Syst. Geom. Theor. 13 (2015), 2733.

    • Search Google Scholar
    • Export Citation
  • [13]

    Moothathu, T. K. S., Stronger forms of sensitivity for dynamical systems, Non-linearity, 20 (9), (2007), 21152126.

  • [14]

    Shao, S., Proximity and distality via Furstenberg families, Topology Appl., 153 (12), (2006), 20552072.

  • [15]

    Tan, F. and Xiong, J., Chaos via Furstenberg family couple, Topology Appl., 156 (3), (2009), 525532.

  • [16]

    Tan, F. and Zhang, R., On F-sensitive pairs, Acta Math. Sci. Ser. B (Engl. Ed.), 31 (4), (2011), 14251435.

  • [17]

    Thakur, R. and Das, R., Devaney chaos and stronger forms of sensitivity on the product of semiflows, Semigroup Forum, 98 (3), (2019), 631644.

    • Search Google Scholar
    • Export Citation
  • [18]

    Wang, H., Xiong, J. and Tan, F., Furstenberg families and sensitivity, Discrete Dyn. Nat. Soc. (2010), Art. ID 649348, 12.

  • [19]

    Wang, X., Wu, X. and Chen, G., Sufficient conditions for ergodic sensitivity, J. Nonlinear Sci. Appl., 10 (7), (2017), 34043408.

  • [20]

    Wu, X., Li, R. and Zhang, Y., The multi-F-sensitivity and (F 1, F 2)-sensitivity for product systems, J. Nonlinear Sci. Appl., 9 (6), (2016), 43644370.

    • Search Google Scholar
    • Export Citation
  • [21]

    Wu, X., Wang, J. and Chen, G., F-sensitivity and multi-sensitivity of hyperspatial dynamical systems, J. Math. Anal. Appl., 429 (1), (2015), 1626.

    • Search Google Scholar
    • Export Citation
  • [22]

    Wu, X. and Zhu, P., Dense chaos and densely chaotic operators, Tsukuba J. Math., 36 (2), (2012), 367375.

  • [23]

    Wu, X. and Zhu, P., Devaney chaos and Li-Yorke sensitivity for product systems, Studia Sci. Math. Hungar., 49 (4), (2012), 538548.