View More View Less
  • 1 GC University Lahore, Pakistan
  • 2 Government Girls Degree College Civil Lines, Jhelum, Pakistan
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

We present a technique to construct Cohen–Macaulay graphs from a given graph; if this graph fulfills certain conditions. As a consequence, we characterize Cohen–Macaulay paths.

  • [1]

    Ahmad, S., Anwar, I. and Abbas, F., Cohen–Macaulay Hybrid Graphs, preprint, arXiv:1904.03824.

  • [2]

    Bruns, W. and Herzog, J., Cohen–Macaulay Rings, Revised Edition, Cambridge, 1998.

  • [3]

    Estrada, M. and Villareal, R. H., Cohen–Macaulay Bipartite Graphs, Arch. Math., 68 (1997), 124128.

  • [4]

    Francisco, C. A. and Hà, H. T., Whiskers and Sequentially Cohen–Macaulay Graphs, J. Combin. Theory Ser. A, 115(2) (2008), 304316.

    • Search Google Scholar
    • Export Citation
  • [5]

    Herzog, J. and Hibi, T., Monomial Ideals, Graduate Texts in Mathematics, Springer, 2011.

  • [6]

    Herzog, J. and Hibi, T., Distributive Lattices, Bipartite Graphs and Alexander duality, J. Algebraic Combin., 22 (2005), 289302.

  • [7]

    Herzog, J., Hibi, T. and Zheng, X., Cohen–Macaulay Chordal Graphs, J. Combin. Theory Ser. A, 113(5) (2006), 911916.

  • [8]

    Vander, K., Tuyl, A. V. and Watt, C., Cohen–Macaulay Circulant Graphs, Comm. Algebra, 42 (2014), 18961920.

  • [9]

    Stanley, R. P., Combinatorics and Commutative Algebra, Second Edition, Birkhäuser, 1996.

  • [10]

    Villarreal, R. H., Cohen-Macaulay Graphs, Manuscripta Math., 66(3) (1990), 277293.

  • [11]

    Villarreal, R. H., Monomial Algebras, Dekker, New York, 2001.