View More View Less
  • 1 Beijing Technology and Business University, Beijing, China
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

For each even classical pretzel knot P(2k1 + 1, 2k2 + 1, 2k3), we determine the character variety of irreducible SL (2, ℂ)-representations, and clarify the steps of computing its A-polynomial.

  • [1]

    Ashley, C., Burelle, J.-P., Lawton, S., Rank 1 character varieties of finitely presented groups. Geometriae Dedicata 192 (2018), no. 1, 119.

    • Search Google Scholar
    • Export Citation
  • [2]

    Chen, H.-M., Trace-free SL (2, ℂ)-representations of Montesinos links, J. Knot Theor. Ramif., 27 (2018), no. 8, 1850050 (10 pages).

  • [3]

    Chen, H.-M., Character varieties of odd classical pretzel knots, Int. J. Math., 29 (2018), no. 9, 1850060 (15 pages).

  • [4]

    Cooper, D., Culler, M., Gillet, H., Long, D. D., Shalen, P. B., Plane curves associated to character varieties of 3-manifolds, Invent. Math., 118 (1994), 4784.

    • Search Google Scholar
    • Export Citation
  • [5]

    Culler, M., Shalen, P. B., Varieties of group representations and splittings of 3-manifolds, Ann. Math., 117 (1983), no. 1, 109146.

  • [6]

    Garoufalidis, S., On the characteristic and deformation varieties of a knot, Proceedings of the Casson Fest, Geom. Topol. Monogr., vol. 7, Geom. Topol. Publ., Coventry, 2004, 291309 (electronic).

    • Search Google Scholar
    • Export Citation
  • [7]

    Gelca, R., On the relations between the A-polynomial and the Jones polynomial, Proc. Amer. Math. Soc., 130 (2002), no. 4, 12351241.

  • [8]

    Goldman, W. M., Trace coordinates on Fricke spaces of some simple hyperbolic surfaces, https://arxiv.org/abs/0901.1404

  • [9]

    Lê, T. T. Q., The colored Jones polynomial and the A-polynomial of knots, Adv. Math., 207 (2006), no. 2, 782804.

  • [10]

    Long, D. D., Reid, A. W., Integral points on character variety, Math. Ann., 325 (2003), 299321.

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu