View More View Less
  • 1 Institute of Mathematics and Mechanics, Baku, Azerbaijan
  • | 4 Baku State University, Dumlupinar University, Baku, Azerbaijan
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

In this paper, we obtain generalized weighted Sobolev-Morrey estimates with weights from the Muckenhoupt class Ap by establishing boundedness of several important operators in harmonic analysis such as Hardy-Littlewood operators and Calderon-Zygmund singular integral operators in generalized weighted Morrey spaces. As a consequence, a priori estimates for the weak solutions Dirichlet boundary problem uniformly elliptic equations of higher order in generalized weighted Sobolev-Morrey spaces in a smooth bounded domain Ω ⊂ ℝn are obtained.

  • [1]

    Agmon, S., Douglis, A. and Nirenberg, L., Estimates near the boundary for solutions of elliptic partial diferential equations satisfiying general boundary conditions, Comm. Pure Appl. Math., 12 (1959), 623727.

    • Search Google Scholar
    • Export Citation
  • [2]

    Agmon, S., Douglis, A. and Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Commun. Pure Appl. Anal., 12 (1969), 623647.

    • Search Google Scholar
    • Export Citation
  • [3]

    Akbulut, A., Guliyev, V. S. and Mustafayev, R., On the boundedness of the maximal operator and singular integral operators in generalized Morrey spaces, Math. Bohem., 137 (1) (2012), 2743.

    • Search Google Scholar
    • Export Citation
  • [4]

    Calderon, A. P. and Zygmund, A., On the existence of certain singular integrals, Acta Math., 88 (1) (1952), 85139.

  • [5]

    Calderon, A. P. and Zygmund, A., Singular integral operators and differential equations, Amer. J. Math., 79 (1957), 901921.

  • [6]

    Chanillo, S. and Wheeden, R., Harnac's inequality and mean value inequalities for degenerate elliptic equations, Com. Pure. Dif. Eq. 11 (1986), 111134.

    • Search Google Scholar
    • Export Citation
  • [7]

    Chiarenza, F., Frasca, M. and Longo, P., Interior W2,p-estimates for nondi-vergence elliptic equations with discontinuous coefficients, Ricerche Mat., 40 (1991), 149168.

    • Search Google Scholar
    • Export Citation
  • [8]

    Chiarenza, F., Frasca, M. and P. Longo, W2,p-solvability of Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc., 336 (1993), 841853.

    • Search Google Scholar
    • Export Citation
  • [9]

    Di Fazio, G. and Ragusa, M. A., Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal., 112 (3) (1993), 241256.

    • Search Google Scholar
    • Export Citation
  • [10]

    Di Fazio, G., Palagachev, D. K. and Ragusa, M. A., Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients, J. Funct. Anal., 166 (2) (1999), 179196.

    • Search Google Scholar
    • Export Citation
  • [11]

    Dall'Acqua, A. and Sweers, G., Estimates for Green function and Poisson kernels of higher order Dirichlet boundary value problems, J. Differential Equations, 205 (2) (2004), 466487.

    • Search Google Scholar
    • Export Citation
  • [12]

    Duran, R. G., Sanmartino, M. and Toschi, M., Weighted a priori estimates for Poisson equation, Indiana Univ. Math. J., 57 (2008), 34633478.

    • Search Google Scholar
    • Export Citation
  • [13]

    Duran, R., Sanmartino, M. and Toschi, M., Weighted apriori estimates for solution (−Δ)mn = f with homogeneous Dirichlet conditions, Anal. Theory Appl., 26 (4) (2010), 339349.

    • Search Google Scholar
    • Export Citation
  • [14]

    Eroglu, A., Omarova, M. N. and Muradova, Sh. A., Elliptic equations with measurable coefficients in generalized weighted Morrey spaces, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 43 (2) (2017), 197213.

    • Search Google Scholar
    • Export Citation
  • [15]

    Grunau, H. Ch. and Sweers, G., Sharp estimates for iterated Green functions, Proc. Roy. Soc. Edinburgh (Section A), 132 (1) (2002), 91120.

    • Search Google Scholar
    • Export Citation
  • [16]

    Grunau, H.-Ch. and Sweers, G., Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions, Math. Ann., 307(4) (1997), 589626.

    • Search Google Scholar
    • Export Citation
  • [17]

    Grunau, H.-Ch. and Sweers, G., The role of positive boundary data in generalized clamped plate equations, Z. Angew. Math. Phys., 49 (3) (1998), 420435.

    • Search Google Scholar
    • Export Citation
  • [18]

    Guliyev, V. S., Integral operators on function spaces on the homogeneous groups and on domains in G, Doctor's degree dissertation, (Russian) Moscow, Mat. Inst. Steklov, 1994, 1329.

    • Search Google Scholar
    • Export Citation
  • [19]

    Guliyev, V. S., Function spaces, integral operators and two weighted inequalities on homogeneous groups. Some applications, Baku (1999), 1332 (in Russian).

    • Search Google Scholar
    • Export Citation
  • [20]

    Guliyev, V. S., Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J. Inequal. Appl. Art., ID 503948 (2009), 20 pp.

    • Search Google Scholar
    • Export Citation
  • [21]

    Guliyev, V. S., Aliyev, S.S., Karaman, T. and Shukurov, P., Boundedness of sublinear operators and commutators on generalized Morrey spaces, Integral Equations and Operator Theory, 71 (3) (2011), 327355.

    • Search Google Scholar
    • Export Citation
  • [22]

    Guliyev, V. S., Generalized weighted Morrey spaces and higher order commutators of sublinear operators, Eurasian Math. J., 3 (3) (2012), 3361.

    • Search Google Scholar
    • Export Citation
  • [23]

    Guliyev, V. and Softova, L., Global regularity in generalized Morrey spaces of solutions to nondivergence elliptic equations with VMO coefficients, Potential Anal., 38 (3) (2013), 843862.

    • Search Google Scholar
    • Export Citation
  • [24]

    Guliyev, V. S. and Softova, L., Generalized Morrey regularity for parabolic equations with discontinuity data, Proc. Edinb. Math. Soc. (2), 58 (1) (2015), 199218.

    • Search Google Scholar
    • Export Citation
  • [25]

    Guliyev, V. S., Omarova, M. N., Multilinear singular and fractional integral operators on generalized weighted Morrey spaces, Azerb. J. Math., 5 (1) (2015), 104132.

    • Search Google Scholar
    • Export Citation
  • [26]

    Guliyev, V. S. and Hamzayev, V. H., Rough singular integral operators and its commutators on generalized weighted Morrey spaces, Math. Inequal. Appl., 19 (3) (2016), 863881.

    • Search Google Scholar
    • Export Citation
  • [27]

    Guliyev, V. S. and Omarova, M. N., Parabolic oblique derivative problem with discontinuous coefficients in generalized weighted Morrey spaces, Open Math., 14 (1) (2016), 4961.

    • Search Google Scholar
    • Export Citation
  • [28]

    Guliyev, V. S., Muradova, Sh. A., Omarova, M. N. and Softova, L., Gradient estimates for parabolic equations in generalized weighted Morrey spaces, Acta Math. Sin. (Engl. Ser.), 32 (8) (2016), 911924.

    • Search Google Scholar
    • Export Citation
  • [29]

    Guliyev, V. S., Gadjiev, T. S. and Galandarova, Sh., Dirichlet boundary value problem for uniformly ellioptic equations in modified local generalized Soboblev-Morrey spaces, Electron. J. Qual. Theory Differ. Equ., 2017, Paper No. 71, 17 pp.

    • Search Google Scholar
    • Export Citation
  • [30]

    Guliyev, V. S., Omarova, M. N., Ragusa, M. A. and Scapellato, A., Commutators and generalized local Morrey spaces, J. Math. Anal. Appl., 457 (2) (2018), 13881402.

    • Search Google Scholar
    • Export Citation
  • [31]

    Guliyev, V. S., Ahmadli, A. A., Omarova, M. N. and Softova, L., Global regularity in Orlicz-Morrey spaces of solutions to nondivergence elliptic equations with VMO coefficients, Electron. J. Differential Equations, 2018, Paper No. 110, 24 pp.

    • Search Google Scholar
    • Export Citation
  • [32]

    Guliyev, V. S., Omarova, M. N. and Softova, L., The Dirichlet problem in a class of generalized weighted Morrey spaces, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 45 (2) (2019), 119.

    • Search Google Scholar
    • Export Citation
  • [33]

    Gadjiev, T. S., Galandarova, Sh. and Guliyev, V. S., Regularity in generalized Morrey spaces of solutions to higher order nondivergence elliptic equations with VMO coefficients, Electron. J. Qual. Theory Differ. Equ., 2019, Paper No. 55, 17 pp.

    • Search Google Scholar
    • Export Citation
  • [34]

    Hamzayev, V. H., Sublinear operators with rough kernel generated by Calderon-Zygmund operators and their commutators on generalized weighted Morrey spaces, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 38 (1) (2018), Mathematics, 7994.

    • Search Google Scholar
    • Export Citation
  • [35]

    Komori, Y. and S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr., 282 (2) (2009), 219231.

  • [36]

    Morrey, C. B., On the solutions of quasi-linear elliptic partial differential equations, Trans. of the Am. Math. Soc., 43 (1) (1938), 126166.

    • Search Google Scholar
    • Export Citation
  • [37]

    Muckenhoupt, B., Weighted norm ineqaulities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207226.

  • [38]

    Mizuhara, T., Boundedness of some classical operators on generalized Morrey spaces, Harmonic Anal., Proc.Conf., Sendai/Jap. 1990, ICM-90 Satell. Conf. Proc. (1991), 183189.

    • Search Google Scholar
    • Export Citation
  • [39]

    Nakai, E., Hardy-Littlewood maximal operator, singular integral operators and the Reisz potentials on generalized Morrey spaces, Math Nachr., 166 (1994), 95103.

    • Search Google Scholar
    • Export Citation
  • [40]

    Palagachev, D. K., Ragusa, M. A. and Softova, L. G., Cauchy-Dirichlet problem in Morrey spaces for parabolic equations with discontinuous coefficients, Boll. UMI, B8 (6) (2003), 667683.

    • Search Google Scholar
    • Export Citation
  • [41]

    Peetre, J., On the theory Lp,λ, J. Fund. Anal., 4 (1969), 7187.

  • [42]

    Softova, L. G., The Dirichlet problem for elliptic equations with VMO coefficients in generalized Morrey spaces, in: Advances in harmonic analysis and operator theory, Operator Theory: Advances and Applications, Springer, Volume 229 (2013), pp. 371386.

    • Search Google Scholar
    • Export Citation

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
submission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)