View More View Less
  • 1 University of Debrecen, H-4002 Debrecen Pf.400, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

Let m ≠ 0, ±1 and n ≥ 2 be integers. The ring of algebraic integers of the pure fields of type (nm) is explicitly known for n = 2, 3,4. It is well known that for n = 2, an integral basis of the pure quadratic fields can be given parametrically, by using the remainder of the square-free part of m modulo 4. Such characterisation of an integral basis also exists for cubic and quartic pure fields, but for higher degree pure fields there are only results for special cases.

In this paper we explicitly give an integral basis of the field (nm), where m ≠ ±1 is square-free. Furthermore, we show that similarly to the quadratic case, an integral basis of (nm) is repeating periodically in m with period length depending on n.

  • [1]

    Berwick, W. E. H., Integral bases, Cambridge University Press (Cambridge Tracts in Mathematics and Mathematical Physics No. 22) (1927).

    • Search Google Scholar
    • Export Citation
  • [2]

    Dedekind, R., Ueber die Anzahl der Idealklassen in reinen kubischen Zahlkörpern, J. Reine Angew. Math., 121 (1900), 40123.

  • [3]

    Funakura, T., On integral bases of pure quartic fields, Math. J. Okayama Univ., 26 (1984), 2741.

  • [4]

    El Fadil, L., Montes, J. and Nart, E., Newton polygons and p-integral bases of quartic number fields, J. Algebra Appl., 11 (4) (2012), 33 p.

    • Search Google Scholar
    • Export Citation
  • [5]

    Gaal, I. and Remete, L., Integral bases and monogenity of pure fields, Journal of Number Theory, 173 (2017), 129146.

  • [6]

    Gaál, I. and Remete, L., Integral bases and monogenity of the simplest sextic fields, Acta Arithmetica, 182 (2) (2018), 173183.

  • [7]

    Gassert, T. A., A note on the monogenity of power maps, Albanian Journal of Mathematics, 11 (2017), 312.

  • [8]

    Guàrdia, J., Montes, J. and Nart, E., Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc., 364 (1) (2012) 361416.

    • Search Google Scholar
    • Export Citation
  • [9]

    Hameed, A. and Nakahara, T., Integral bases and relative monogenity of pure octic fields, Bull. Math. Soc. Sci. Math. Repub. Soc. Roum., Nouv. Sér., 58 (106), (2015) No. 4, 419433.

    • Search Google Scholar
    • Export Citation
  • [10]

    Hameed, A., Nakahara, T., Husnine, S. M. and Ahmad, S., On existence of canonical number system in certain classes of pure algebraic number fields, J. Prime Research in Mathematics, 7 (2011), 1924.

    • Search Google Scholar
    • Export Citation
  • [11]

    Narkiewicz, W., Elementary and analytic theory of algebraic numbers, 3rd ed., Springer Monogr. Math. (2004).

  • [12]

    Okutsu, K., Integral basis of the field ( n a ), Proc. Japan Acad., Ser. A, 58 (1982), 219222.

  • [13]

    Ore, Ø., Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann., 99 (1928) 84117.

  • [14]

    Pohst, M. and Zassenhaus, H., Algorithmic algebraic number theory, Cambridge University Press, (1989).