View More View Less
  • 1 Department of Mathematics, University of South Carolina, Columbia SC 29212, USA
  • 2 Visiting Professor at the Department of Pure and Applied Mathematics, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
  • 3 e-mail: czabarka@math.sc.edu
  • 4 e-mail: isinggih@math.sc.edu
  • 5 e-mail: szekely@math.sc.edu
  • 6 e-mail: zhiyuw@math.sc.edu
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

We verify an upper bound of Pach and Tóth from 1997 on the midrange crossing constant. Details of their89π2 upper bound have not been available. Our verification is different from their method and hinges on a result of Moon from 1965. As Moon’s result is optimal, we raise the question whether the midrange crossing constant is 89π2.

  • [1]

    Ackerman, E., On topological graphs with at most four crossings per edge, arXiv:1509.01932.

  • [2]

    Ajtai, M., Chviátal, V., Newborn, M. and Szemerédi, E., Crossing-free subgraphs, Annals of Discrete Mathematics, 12 (1982), 912.

  • [3]

    Angelini, P., Bekos, M. A., Kaufmann, M., Pfister, M. and Ueckerdt, T., Beyond-planarity: density results for bipartite graphs, arXiv:1712.09855.

    • Search Google Scholar
    • Export Citation
  • [4]

    Asplund, J., Clark, G., Cochran, G., Czabarka, É., Hamm, A., Spencer, G., Székely, L. A., Taylor, L. and Wang, Z., Using block designs in crossing number bounds, J. Combin. Designs, 27(10 ) (2019), 586597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [5]

    Balogh, J., Lidický, B. and Salazar, G., Closing in on Hill’s conjecture, arXiv:1711.08958v2, SIAM J. Discrete Math., 33(3 ) (2019), 12611276.

  • [6]

    Czabarka, É., Reiswig, J., Szákely, L. A. and Z. Wang, Midrange crossing constants of graph classes, arXiv:1811.08071, to appear in Indian J. Discrete Math.

    • Search Google Scholar
    • Export Citation
  • [7]

    Erdős, P. and Guy, R. K., Crossing number problems, American Mathematical Monthly, 80 (1973), 5258.

  • [8]

    Leighton, F. T., Complexity Issues in VLSI, MIT Press, Cambridge, 1983.

  • [9]

    Moon, J., On the distribution of crossings in random complete graphs, J. Soc. Indust. Appl. Math., 13 (1965), 506510.

  • [10]

    Pach, J., Spencer, J. and Tóth, G., New bounds on crossing numbers, Discrete & Computational Geometry, 24(4) (2000), 623644.

  • [11]

    Pach, J., Székely, L. A., Tóth, Cs. D. and Tóth, G., Note on k-planar crossing numbers, Computational Geometry: Theory and Applications Special Issue in Memoriam Ferran Hurtado, 68 (2018), 26.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [12]

    Pach, J. and Tóth, G. , Graphs drawn with few crossings per edge, Combinatorica, 17 (1997), 427439.

  • [13]

    Pach, J., Radoičič, R. , Tardos, G. and Tóth, G., Improving the Crossing Lemma by finding more crossings in sparse graphs, Discrete and Computational Geometry 36 (2006), 527552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [14]

    M. Schaefer, Crossing Numbers of Graphs, CRC Press, Boca Raton FL, 2017.

  • [15]

    L. A. Székely, Turán’s Brick Factory Problem: the Status of the Conjectures of Zarankiewicz and Hill, Chapter 13 in it Graph Theory—Favorite Conjectures and Open Problems -1, eds. R. Gera, S. Hedetniemi, C. Larson, Problem Books in Mathematics series, Springer-Verlag, 2016, 211230.

    • Search Google Scholar
    • Export Citation