Author:
Sung Guen Kim Department of Mathematics, Kyungpook National University, Daegu 702-701, South Korea

Search for other papers by Sung Guen Kim in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

For n,m≥ 2 this paper is devoted to the description of the sets of extreme and exposed points of the closed unit balls of (lnm) and s(lnm), where (lnm) is the space of n-linear forms on m with the supremum norm, and s(lnm) is the subspace of (lnm) consisting of symmetric n-linear forms. First we classify the extreme points of the unit balls of (lnm) and s(lnm), respectively. We show that ext B(lnm) ⊂ ext B(lnm+1), which answers the question in [32]. We show that every extreme point of the unit balls of (lnm) and s(lnm) is exposed, correspondingly. We also show that
extBs(ln2)=ext B(ln2)s(ln2),
ext Bs(l2m+1)ext B(l2m+1)s(l2m+1),
expBS(ln2)=expB(ln2)s(ln2)

and expBs(l2m+1)expB(l2m+1)s(l2m+1),

which answers the questions in [31].

  • [1]

    Aron, R. M. and Klimek, M., Supremum norms for quadratic polynomials, Arch. Math. (Basel), 76 (2001), 7380.

  • [2]

    Cavalcante, W. and Pellegrino, D., Geometry of the closed unit ball of the space of bilinear forms on l 2, arXiv:1603.01535v2.

  • [3]

    Choi, Y. S., Ki, H. and Kim, S. G., Extreme polynomials and multilinear forms on l1, J. Math. Anal. Appl., 228 (1998), 467482.

  • [4]

    Choi, Y. S. and Kim, S. G., The unit ball of p( 2 l 2 2 ), Arch. Math. (Basel), 71 (1998), 472480.

  • [5]

    Choi, Y. S. and Kim, S. G., Extreme polynomials on c0, Indian J. Pure Appl. Math., 29 (1998), 983989.

  • [6]

    Choi, Y. S. and Kim, S. G., Smooth points of the unit ball of the space ( 2 l 1 ), Results Math., 36 (1999), 2633.

  • [7]

    Choi, Y. S. and Kim, S. G., Exposed points of the unit balls of the spaces p( 2 l p 2 ) ( p = 1 , 2 , ), Indian J. Pure Appl. Math., 35 (2004), 3741.

    • Search Google Scholar
    • Export Citation
  • [8]

    Dineen, S., Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London (1999).

  • [9]

    GÁMEZ-MERINO, J. L., MUÑOZ-FERNÁDEZ, G. A., SÁNCHEZ, V. M. and SEOANE-SEPÚlVEDA, J. B., Inequalities for polynomials on the unit square via the Krein–Milman Theorem, J. Convex Anal., 20(1) (2013), 125142.

    • Search Google Scholar
    • Export Citation
  • [10]

    Grecu, B. C., Geometry of three-homogeneous polynomials on real Hilbert spaces, J. Math. Anal. Appl., 246 (2000), 217229.

  • [11]

    Grecu, B. C., Smooth 2-homogeneous polynomials on Hilbert spaces, Arch. Math. (Basel), 76(6) (2001), 445454.

  • [12]

    Grecu, B. C., Geometry of 2-homogeneous polynomials on lp spaces, 1 < p < ∞, J. Math. Anal. Appl., 273 (2002), 262282.

  • [13]

    Grecu, B. C, Extreme 2-homogeneous polynomials on Hilbert spaces, Quaest. Math., 25(4) (2002), 421-435.

  • [14]

    GRECU, B. C., Geometry of homogeneous polynomials on two-dimensional real Hilbert spaces, J. Math. Anal. Appl., 293 (2004), 578-588.

  • [15]

    Grecu, B. C., MUÑOZ-FERÑNDEZ, G. A. and SEOANE-SEPÚLVEDA, J. B.., The unit ball of the complex P(3H), Math. Z., 263 (2009), 775-785.

  • [16]

    KIM S.G., Exposed 2-homogeneous polynomials on p( 2 l p 2 ) ( 1 p ), Math. Proc. R. Ir. Acad., 107 (2007), 123-129.

  • [17]

    KIM, S. G., The unit ball of s ( 2 l 2 ), Extracta Math., 24 (2009), 17-29.

  • [18]

    KIM, S. G., The unit ball of 𝒫(2d*(1,w)2), Math. Proc. R. Ir. Acad., 111(2) (2011), 79-94.

  • [19]

    KIM, S. G., The unit ball of 𝓛s(2 d*(1,w)2), Kyungpook Math. J., 53 (2013) 295306.

  • [20]

    KIM, S.G., Smooth polynomials of p( 2 d * ( 1 , w ) 2 ), Math. Proc. R. Ir. Acad., 113A(1) (2013), 45-58.

  • [21]

    KIM, S. G., Extreme bilinear forms of 𝓛(2d*(1,w)2), Kyungpook Math. J., 53 (2013), 625-638.

  • [22]

    KIM, S. G., Exposed symmetric bilinear forms of 𝓛s(2d*(1,w)2), Kyungpook Math. J., 54 (2014), 341-347.

  • [23]

    KIM, S. G., Polarization and unconditional constants of 𝒫(2d*(1,w)2), Commun. Korean Math. Soc, 29 (2014), 421-428.

  • [24]

    KIM, S. G., Exposed bilinear forms of 𝓛(2d*(1,w)2), Kyungpook Math. J., 55 (2015), 119-126.

  • [25]

    KIM, S. G., Exposed 2-homogeneous polynomials on the two-dimensional real pre- dual of Lorentz sequence space, Mediterr. J. Math., 13 (2016), 2827-2839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [26]

    KIM, S. G., The unit ball of ( 2 h ( w ) 2 ), Bull. Korean Math. Soc, 54 (2017), 417428.

  • [27]

    KIM, S. G., Extremal problems for s ( 2 h ( w ) 2 ), Kyungpook Math. J., 57 (2017), 223-232.

  • [28]

    KIM, S. G., The unit ball of s ( 2 l 3 ), Comment. Math., 57 (2017), 1-7.

  • [29]

    KIM, S. G., The geometry of s ( 3 l 2 ), Commun. Korean Math. Soc, 32 (2017), 991-997.

  • [30]

    KIM, S. G., Extreme 2-homogeneous polynomials on the plane with a hexagonal norm and applications to the polarization and unconditional constants, Studia Set. Math. Hungar., 54 (2017), 362-393.

    • Search Google Scholar
    • Export Citation
  • [31]

    KIM, S. G., The geometry of ( 3 l 2 ) and optimal constants in the Bohnenblust- Hill inequality for multilinear forms and polynomials, Extracta Math., 33(1) (2018), 51-66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [32]

    KIM, S. G., Extreme bilinear forms on ℝn with the supremum norm, Period. Math. Hungar., 77 (2018), 274-290.

  • [33]

    KIM, S. G., Exposed polynomials of p( 3 h ( 1 2 ) 2 ), Extracta Math., 33(2) (2018), 127– 143.

  • [34]

    KIM, S. G., Extreme and exposed multi-linear forms on ℝ2 with the supremum norm, preprint.

  • [35]

    KIM, S. H. and Lee, S. H., Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc, 131 (2003), 449-453.

  • [36]

    Konheim, A. G. and RIVLIN, T. J., Extreme points of the unit ball in a space of real polynomials, Amer. Math. Monthly, 73 (1966), 505-507.

  • [37]

    MILEV, L. NAIDENOV, N., Strictly definite extreme points of the unit ball in a polynomial space, C R. Acad. Bulg. Sci., 61 (2008), 1393-1400.

    • Search Google Scholar
    • Export Citation
  • [38]

    MILEV, L. NAIDENOV, N., Indefinite extreme points of the unit ball in a polynomial space, Acta Sci. Math. (Szeged) 77(3-4) (2011), 409-424.

    • Search Google Scholar
    • Export Citation
  • [39]

    MILEV, L. NAIDENOV, N., Semidefinite extreme points of the unit ball in a polynomial space, J. Math. Anal. Appl., 405 (2013), 631-641.

  • [40]

    MUÑOZ-FERÑNDEZ, G. A.., Pellegrino, D., SEOANE-SEPÚLVEDA, J. B. and Weber, A., Supremum norms for 2-homogeneous polynomials on circle sectors, J. Convex Anal., 21(3) (2014), 745-764.

    • Search Google Scholar
    • Export Citation
  • [41]

    MUÑOZ-FERÑNDEZ, G. A.., RÉVÉSZ, S. G. and SEOANE-SEPÚLVEDA, J. B.., Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand., 105 (2009), 147-160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [42]

    MUÑOZ-FERÑNDEZ, G. A. and SEOANE-SEPÚLVEDA, J. B., Geometry of Banach spaces of trinomials, J. Math. Anal. Appl., 340 (2008), 1069-1087.

  • [43]

    NEUWIRTH, S., The maximum modulus of a trigonometric trinomial, J. Anal. Math., 104 (2008), 371-396.

  • [44]

    RÉVÉSZ, S. G., Minimization of maxima of nonnegative and positive definite cosine polynomials with prescribed first coefficients, Acta Sci. Math. (Szeged), 60(3-4) (1995), 589-608.

    • Search Google Scholar
    • Export Citation
  • [45]

    Ryan, R. A. and TURETT, B., Geometry of spaces of polynomials, J. Math. Anal. Appl., 221 (1998), 698-711.

  • Collapse
  • Expand

 

The LaTeX template package can be downloaded from HERE

 

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)