View More View Less
  • 1 Department of Mathematics, Kyungpook National University, Daegu 702-701, South Korea
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

For n,m≥ 2 this paper is devoted to the description of the sets of extreme and exposed points of the closed unit balls of (lnm) and s(lnm), where (lnm) is the space of n-linear forms on m with the supremum norm, and s(lnm) is the subspace of (lnm) consisting of symmetric n-linear forms. First we classify the extreme points of the unit balls of (lnm) and s(lnm), respectively. We show that ext B(lnm) ⊂ ext B(lnm+1), which answers the question in []. We show that every extreme point of the unit balls of (lnm) and s(lnm) is exposed, correspondingly. We also show that
extBs(ln2)=ext B(ln2)s(ln2),
ext Bs(l2m+1)ext B(l2m+1)s(l2m+1),
expBS(ln2)=expB(ln2)s(ln2)

and expBs(l2m+1)expB(l2m+1)s(l2m+1),

which answers the questions in [].

  • [1]

    Aron, R. M. and Klimek, M., Supremum norms for quadratic polynomials, Arch. Math. (Basel), 76 (2001), 7380.

  • [2]

    Cavalcante, W. and Pellegrino, D., Geometry of the closed unit ball of the space of bilinear forms on l 2, arXiv:1603.01535v2.

  • [3]

    Choi, Y. S., Ki, H. and Kim, S. G., Extreme polynomials and multilinear forms on l1, J. Math. Anal. Appl., 228 (1998), 467482.

  • [4]

    Choi, Y. S. and Kim, S. G., The unit ball of p( 2 l 2 2 ), Arch. Math. (Basel), 71 (1998), 472480.

  • [5]

    Choi, Y. S. and Kim, S. G., Extreme polynomials on c0, Indian J. Pure Appl. Math., 29 (1998), 983989.

  • [6]

    Choi, Y. S. and Kim, S. G., Smooth points of the unit ball of the space ( 2 l 1 ), Results Math., 36 (1999), 2633.

  • [7]

    Choi, Y. S. and Kim, S. G., Exposed points of the unit balls of the spaces p( 2 l p 2 ) ( p = 1 , 2 , ), Indian J. Pure Appl. Math., 35 (2004), 3741.

    • Search Google Scholar
    • Export Citation
  • [8]

    Dineen, S., Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London (1999).

  • [9]

    GÁMEZ-MERINO, J. L., MUÑOZ-FERNÁDEZ, G. A., SÁNCHEZ, V. M. and SEOANE-SEPÚlVEDA, J. B., Inequalities for polynomials on the unit square via the Krein–Milman Theorem, J. Convex Anal., 20(1) (2013), 125142.

    • Search Google Scholar
    • Export Citation
  • [10]

    Grecu, B. C., Geometry of three-homogeneous polynomials on real Hilbert spaces, J. Math. Anal. Appl., 246 (2000), 217229.

  • [11]

    Grecu, B. C., Smooth 2-homogeneous polynomials on Hilbert spaces, Arch. Math. (Basel), 76(6) (2001), 445454.

  • [12]

    Grecu, B. C., Geometry of 2-homogeneous polynomials on lp spaces, 1 < p < ∞, J. Math. Anal. Appl., 273 (2002), 262282.

  • [13]

    Grecu, B. C, Extreme 2-homogeneous polynomials on Hilbert spaces, Quaest. Math., 25(4) (2002), 421-435.

  • [14]

    GRECU, B. C., Geometry of homogeneous polynomials on two-dimensional real Hilbert spaces, J. Math. Anal. Appl., 293 (2004), 578-588.

  • [15]

    Grecu, B. C., MUÑOZ-FERÑNDEZ, G. A. and SEOANE-SEPÚLVEDA, J. B.., The unit ball of the complex P(3H), Math. Z., 263 (2009), 775-785.

    • Search Google Scholar
    • Export Citation
  • [16]

    KIM S.G., Exposed 2-homogeneous polynomials on p( 2 l p 2 ) ( 1 p ), Math. Proc. R. Ir. Acad., 107 (2007), 123-129.

  • [17]

    KIM, S. G., The unit ball of s ( 2 l 2 ), Extracta Math., 24 (2009), 17-29.

  • [18]

    KIM, S. G., The unit ball of 𝒫(2d*(1,w)2), Math. Proc. R. Ir. Acad., 111(2) (2011), 79-94.

  • [19]

    KIM, S. G., The unit ball of 𝓛s(2 d*(1,w)2), Kyungpook Math. J., 53 (2013) 295306.

  • [20]

    KIM, S.G., Smooth polynomials of p( 2 d * ( 1 , w ) 2 ), Math. Proc. R. Ir. Acad., 113A(1) (2013), 45-58.

  • [21]

    KIM, S. G., Extreme bilinear forms of 𝓛(2d*(1,w)2), Kyungpook Math. J., 53 (2013), 625-638.

  • [22]

    KIM, S. G., Exposed symmetric bilinear forms of 𝓛s(2d*(1,w)2), Kyungpook Math. J., 54 (2014), 341-347.

  • [23]

    KIM, S. G., Polarization and unconditional constants of 𝒫(2d*(1,w)2), Commun. Korean Math. Soc, 29 (2014), 421-428.

  • [24]

    KIM, S. G., Exposed bilinear forms of 𝓛(2d*(1,w)2), Kyungpook Math. J., 55 (2015), 119-126.

  • [25]

    KIM, S. G., Exposed 2-homogeneous polynomials on the two-dimensional real pre- dual of Lorentz sequence space, Mediterr. J. Math., 13 (2016), 2827-2839.

    • Search Google Scholar
    • Export Citation
  • [26]

    KIM, S. G., The unit ball of ( 2 h ( w ) 2 ), Bull. Korean Math. Soc, 54 (2017), 417428.

  • [27]

    KIM, S. G., Extremal problems for s ( 2 h ( w ) 2 ), Kyungpook Math. J., 57 (2017), 223-232.

  • [28]

    KIM, S. G., The unit ball of s ( 2 l 3 ), Comment. Math., 57 (2017), 1-7.

  • [29]

    KIM, S. G., The geometry of s ( 3 l 2 ), Commun. Korean Math. Soc, 32 (2017), 991-997.

  • [30]

    KIM, S. G., Extreme 2-homogeneous polynomials on the plane with a hexagonal norm and applications to the polarization and unconditional constants, Studia Set. Math. Hungar., 54 (2017), 362-393.

    • Search Google Scholar
    • Export Citation
  • [31]

    KIM, S. G., The geometry of ( 3 l 2 ) and optimal constants in the Bohnenblust- Hill inequality for multilinear forms and polynomials, Extracta Math., 33(1) (2018), 51-66.

    • Search Google Scholar
    • Export Citation
  • [32]

    KIM, S. G., Extreme bilinear forms on ℝn with the supremum norm, Period. Math. Hungar., 77 (2018), 274-290.

  • [33]

    KIM, S. G., Exposed polynomials of p( 3 h ( 1 2 ) 2 ), Extracta Math., 33(2) (2018), 127– 143.

  • [34]

    KIM, S. G., Extreme and exposed multi-linear forms on ℝ2 with the supremum norm, preprint.

  • [35]

    KIM, S. H. and Lee, S. H., Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc, 131 (2003), 449-453.

  • [36]

    Konheim, A. G. and RIVLIN, T. J., Extreme points of the unit ball in a space of real polynomials, Amer. Math. Monthly, 73 (1966), 505-507.

    • Search Google Scholar
    • Export Citation
  • [37]

    MILEV, L. NAIDENOV, N., Strictly definite extreme points of the unit ball in a polynomial space, C R. Acad. Bulg. Sci., 61 (2008), 1393-1400.

    • Search Google Scholar
    • Export Citation
  • [38]

    MILEV, L. NAIDENOV, N., Indefinite extreme points of the unit ball in a polynomial space, Acta Sci. Math. (Szeged) 77(3-4) (2011), 409-424.

    • Search Google Scholar
    • Export Citation
  • [39]

    MILEV, L. NAIDENOV, N., Semidefinite extreme points of the unit ball in a polynomial space, J. Math. Anal. Appl., 405 (2013), 631-641.

  • [40]

    MUÑOZ-FERÑNDEZ, G. A.., Pellegrino, D., SEOANE-SEPÚLVEDA, J. B. and Weber, A., Supremum norms for 2-homogeneous polynomials on circle sectors, J. Convex Anal., 21(3) (2014), 745-764.

    • Search Google Scholar
    • Export Citation
  • [41]

    MUÑOZ-FERÑNDEZ, G. A.., RÉVÉSZ, S. G. and SEOANE-SEPÚLVEDA, J. B.., Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand., 105 (2009), 147-160.

    • Search Google Scholar
    • Export Citation
  • [42]

    MUÑOZ-FERÑNDEZ, G. A. and SEOANE-SEPÚLVEDA, J. B., Geometry of Banach spaces of trinomials, J. Math. Anal. Appl., 340 (2008), 1069-1087.

    • Search Google Scholar
    • Export Citation
  • [43]

    NEUWIRTH, S., The maximum modulus of a trigonometric trinomial, J. Anal. Math., 104 (2008), 371-396.

  • [44]

    RÉVÉSZ, S. G., Minimization of maxima of nonnegative and positive definite cosine polynomials with prescribed first coefficients, Acta Sci. Math. (Szeged), 60(3-4) (1995), 589-608.

    • Search Google Scholar
    • Export Citation
  • [45]

    Ryan, R. A. and TURETT, B., Geometry of spaces of polynomials, J. Math. Anal. Appl., 221 (1998), 698-711.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)