We provide a Maltsev characterization of congruence distributive varieties by showing that a variety 𝓥 is congruence distributive if and only if the congruence identity
Day, A., A characterization of modularity for congruence lattices of algebras, Canad. Math. Bull., 12 (1969), 167-173.
Gumm, H.-P., Geometrical methods in congruence modular algebras, Mem,. Amer. Math. Soc., 45 (1983).
Hobby, D. and McKenzie, R. N., The structure of finite algebras, Contemp. Math., 76 (1988).
Jónsson, B., Algebras whose congruence lattices are distributive, Math. Scand., 21 (1967), 110-121.
Jónsson, B., Congruence varieties, Algebra Universalis, 10 (1980), 355-394.
Kearnes, K. A. and Kiss, E. W., The shape of congruence lattices, Mem. Amer. Math. Soc., 222 (2013).
Lipparini, P., From congruence identities to tolerance identities, Acta Sci. Math. (Szeged), 73 (2007), 31-51.
Lipparini, P., On the number of terms witnessing congruence modularity, arXiv: 1709.06023v2, 1-23 (2017/2019).
McKenzie, R. N., McNulty, G. F. and Taylor, W. F., Algebras, Lattices, Varieties. Vol. I, Wadsworth & Brooks/Cole Advanced Books & Software (1987), corrected reprint with additional bibliography, AMS Chelsea Publishing/American Mathematical Society (2018).
Pixley, A., Local Mal’cev conditions, Canad. Math. Bull. 15 (1972), 559-568.
Wille, R., Kongruenzklassengeometrien, Lecture Notes in Mathematics, 113(1970).