View More View Less
  • 1 Dipartimento Ulteriore di Matematica Viale della Ricerca Scientifica Università di Roma “Tor Vergata”, I-00133 ROME, ITALY
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

We provide a Maltsev characterization of congruence distributive varieties by showing that a variety 𝓥 is congruence distributive if and only if the congruence identity α(βγβ)_αβγαβγ … (k factors) holds in 𝓥, for some natural number k.

  • [1]

    Day, A., A characterization of modularity for congruence lattices of algebras, Canad. Math. Bull., 12 (1969), 167-173.

  • [2]

    Gumm, H.-P., Geometrical methods in congruence modular algebras, Mem,. Amer. Math. Soc., 45 (1983).

  • [3]

    Hobby, D. and McKenzie, R. N., The structure of finite algebras, Contemp. Math., 76 (1988).

  • [4]

    Jónsson, B., Algebras whose congruence lattices are distributive, Math. Scand., 21 (1967), 110-121.

  • [5]

    Jónsson, B., Congruence varieties, Algebra Universalis, 10 (1980), 355-394.

  • [6]

    Kearnes, K. A. and Kiss, E. W., The shape of congruence lattices, Mem. Amer. Math. Soc., 222 (2013).

  • [7]

    Lipparini, P., From congruence identities to tolerance identities, Acta Sci. Math. (Szeged), 73 (2007), 31-51.

  • [8]

    Lipparini, P., On the number of terms witnessing congruence modularity, arXiv: 1709.06023v2, 1-23 (2017/2019).

  • [9]

    McKenzie, R. N., McNulty, G. F. and Taylor, W. F., Algebras, Lattices, Varieties. Vol. I, Wadsworth & Brooks/Cole Advanced Books & Software (1987), corrected reprint with additional bibliography, AMS Chelsea Publishing/American Mathematical Society (2018).

    • Search Google Scholar
    • Export Citation
  • [10]

    Pixley, A., Local Mal’cev conditions, Canad. Math. Bull. 15 (1972), 559-568.

  • [11]

    Wille, R., Kongruenzklassengeometrien, Lecture Notes in Mathematics, 113(1970).