Let 𝔄 be a unital Banach algebra and ℜ its Jacobson radical. This paper investigates Banach algebras satisfying some chain conditions on closed ideals. In particular, it is shown that a Banach algebra 𝔄 satisfies the descending chain condition on closed left ideals then 𝔄/ℜ is finite dimensional. We also prove that a C*-algebra satisfies the ascending chain condition on left annihilators if and only if it is finite dimensional. Moreover, other auxiliary results are established.
Aupetit, B., Propriétés spectrales des algèbres de Banach, vol. 735, Springer-Verlag, Berlin New York, 1979.
Aupetit, B., A primer on spectral theory, Universitext (1979), Springer-Verlag, 1991.
Blecher, D. and Kania, T., Finite generation in C*-algebras and Hilbert C*- modules, Studia Math., 224 (2014), no. 2, 143-151.
Choi, M. D., The full C*-algebra of the free group on two generators, Pac. J. Math., 87 (1980), no. 1, 41-48.
Dales, H. G., On norms of algebras, Miniconference on Operators in Analysis (Canberra AUS), Centre for Mathematics and its Applications, Mathematical Sciences Institute, The Australian National University, 1989, pp. 61-96.
Dales, H. G. and Zelazko, W., Generators of maximal left ideals in Banach algebras, Studia Math. 2834 (2012), 173-193.
Dales, H. G., Aiena, P., Esohmeier, J., Laursen, K. and Willis, G. A., Introduction to Banach algebras, operators, and harmonic analysis, London Mathematical Society Student Texts, Cambridge University Press, 2003.
Dixon, P. G., Locally finite Banach algebras, J. Bond. Math. Soc., 2 (1974), no. 2, 325-328.
Goodearl, K. R. and Menal, P., Free and residually finite-dimensional C*- algebras, J. Funct. Anal., 90 (1990), no. 2, 391-410.
Grabiner, S., The nilpotency of Banach nil algebras, Proc. Am. Math. Soc, 21 (1969), no. 2, 510.
Grabiner, S., Finitely generated, Noetherian, and Artinian Banach modules, Indiana Univ. Math. J., 26 (1977), no. 3, 413-425.
Harte, R. and Mbekhta, M., On generalized inverses in C*-algebras, Studia Math., 103 (1992), no. 1, 71-77.
Hines, T. and Walsberg, E., Nontrivially Noetherian C*-algebras, Math. Scand., (2012), 135-146.
Johnson, B. E. and Sinclair, A. M., Continuity of derivations and a problem of Kaplansky, Amer. J. Math., 90 (1968), no. 4, 1067-1073.
Kaplansky, I., Regular Banach algebras, Indian Math. Soc.(N.S.), 12 (1948), 5762.
Kaplansky, I., Ring isomorphisms of Banach algebras, Canad. J. Math., 6 (1954), 374-381.
Laffey, T. J., Idempotents in algebras and algebraic Banach algebras, Math. Proc. R. Ir. Acad., JSTOR, 1975, pp. 303-306.
Laustsen, N. J. and White, J. T., Subspaces that can and cannot be the kernel of a bounded operator on a Banach space, arXiv preprint arXiv:1811.02399 (2018).
Ogasawara, T., Finite dimensionality of certain Banach algebras, Sci. Hiroshima Univ. Ser. A, 17 (1951), 359-364.
Pourgholamhossein, M., Rouzbehani, M., and Amini, M., Chain conditions for C*-algebras coming from Hilbert C*-modules, Acta Mathematica Scientia, 38 (2018), no. 4, 1163 – 1173.
Raohid, C., A concept of finiteness in topological algebras, Contemporary Mathematics, 427 (2007), 131-137.
Rudin, W., The closed ideals in an algebra of analytic functions, Canad. J. Math., 9 (1957), 426-434
Sinclair, M. and Tullo, W., Noetherian Banach algebras are finite dimensional, Math. Ann., 211 (1974), no. 2, 151-153.
Tullo, A. W., Conditions on Banach algebras which imply finite dimensionality, Proc. Edinburgh Math. Soc., (2) 20 (1976), no. 1, 1-5.
White, J. T., Left ideals of Banach algebras and dual Banach algebras, arXiv preprint arXiv:1811.02393 (2018).