View More View Less
  • 1 Kuwait College of Science and Technology, Doha District, Block 4, P.O. Box 27235, Safat 13133, Kuwait University of Primorska, FAMNIT, Glagoljsaška 8, 6000 Koper, Slovenia
  • | 2 School of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
  • | 3 Faculty of Economics, University of Debrecen, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

This survey revisits Jenő Egerváry and Otto Szász’s article of 1928 on trigonometric polynomials and simple structured matrices focussing mainly on the latter topic. In particular, we concentrate on the spectral theory for the first type of the matrices introduced in the article, which are today referred to as k-tridiagonal matrices, and then discuss the explosion of interest in them over the last two decades, most of which could have benefitted from the seminal article, had it not been overlooked.

  • [1]

    Abramowitz, M. Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, ninth edition, Dover Publications, Inc., New York, 1970.

    • Search Google Scholar
    • Export Citation
  • [2]

    Bebiano, N. and Furtado, S., A reducing approach for symmetrically sparse banded and anti-banded matrices, Linear Algebra Appl., 581 (2019), 3650.

    • Search Google Scholar
    • Export Citation
  • [3]

    Berman, A. and Hershkowitz, D., Characterization of acyclic d-stable matrices, Linear Algebra Appl., 58 (1984), 1731.

  • [4]

    Berman, A. and Hershkowitz, D., Matrix diagonal stability and its applications, SIAM J. Algebr. Discrete Methods, 4 (1983), 377382.

  • [5]

    Buschman, R. G., Fibonacci numbers, Chebyshev polynomials generalizations and difference equations, Fibonacci Quart., 1 (1963), 18, 19.

    • Search Google Scholar
    • Export Citation
  • [6]

    Duru, H. K. and Bozkurt, D., Integer powers of certain complex pentadiagonal Toeplitz matrices, Applied and Computational Matrix Analysis, Springer Proceedings in Mathematics & Statistics, 192, 199218, 2017.

    • Search Google Scholar
    • Export Citation
  • [7]

    Egerváry, E. and Szász, O., Einige Extremalprobleme im Bereiche der trigono- metrischen Polynome, Math. Z, 27 (1928), 641652.

  • [8]

    Ekström, S.-E. and Serra-Capizzano, S.., Eigenvalues and eigenvectors of banded Toeplitz matrices and the related symbols, Numer. Linear Algebra Appl., 25 (2018), e2137.

    • Search Google Scholar
    • Export Citation
  • [9]

    Elsner, L. and Redheffer, R. M., Remarks on band matrices, Numer. Math., 10 (1967), 153161.

  • [10]

    Fejér, L., Über trigonometrische Polynome, J. Reine Angew. Math., 146 (1916), 5382.

  • [11]

    Da Fonseca, C. M., Eigenpairs of some particular band Toeplitz matrices: A comment, Numer. Linear Algebra Appl., 27 (2020), e2270

  • [12]

    Da Fonseca, C. M., On some conjectures regarding tridiagonal matrices, J. Appl. Math. Comput. Mech., 17 (2018), 1317.

  • [13]

    Da Fonseca, C. M., An identity between the determinant and the permanent of Hessenberg type-matrices, Czechoslovak Math. J., 61(136) (2011), 917921.

    • Search Google Scholar
    • Export Citation
  • [14]

    Da Fonseca, C. M. and Kowalenko, V., Eigenpairs of a family of tridiagonal matrices: three decades later, Acta Math. Hungar., 160 (2020), 376389.

    • Search Google Scholar
    • Export Citation
  • [15]

    Da Fonseca, C. M. and Petronilho, J., Explicit inverse of a tridiagonal k-Toeplitz matrix, Numer. Math., 100 (2005), no.3, 457482.

  • [16]

    Da Fonseca, C. M. and Petronilho, J., Explicit inverses of some tridiagonal matrices, Linear Algebra Appl., 325 (2001), 721.

  • [17]

    DA FONSECA, C. M. YILMAZ, F., Some comments on k-tridiagonal matrices: determinant, spectra, and inversion, Appl. Math. Comput., 270 (2015), 644647.

    • Search Google Scholar
    • Export Citation
  • [18]

    Gutiérrez-Gutiérrez, J., Singular value decomposition for comb filter matrices, Appl. Math. Comput., 222 (2013), 472477.

  • [19]

    Hadj, D. A. and Elouafi, M., A fast numerical algorithm for the inverse of a tridiagonal and pentadiagonal matrix, Appl. Math. Comput., 202 (2008), 441445.

    • Search Google Scholar
    • Export Citation
  • [20]

    Han, G.-N. and Krattenthaler, C., Rectangular Scott-type permanents, Séminaire Lotharingien Combin., 43 (2000), Article B43g, 25 pp.

  • [21]

    Horadam, A. F., Basic properties of a certain generalized sequence of numbers, Fibonacci Quart., 3 (1965), 161176.

  • [22]

    Jia, J. and Li, S., Symbolic algorithms for the inverses of general k-tridiagonal matrices, Comput. Math. Appl., 70 (2015), 30323042.

    • Search Google Scholar
    • Export Citation
  • [23]

    Jia, J., Sogabe, T. and El-Mikkawy, M., Inversion of k-tridiagonal matrices with Toeplitz structure, Comput. Math. Appl., 65 (2013), 116125.

    • Search Google Scholar
    • Export Citation
  • [24]

    KILIC, E., On a constant-diagonals matrix, Appl. Math. Comput., 204 (2008), 184190.

  • [25]

    Kirklar, E. and Yilmaz, F., A note on k-tridiagonal k-Toeplitz matrices, Alabama J. Math., 39 (2015).

  • [26]

    Kouachi, S., Explicit eigenvalues of some perturbed heptadiagonal matrices via recurrent sequences, Lobachevskii J. Math., 36 (2015), 2837.

    • Search Google Scholar
    • Export Citation
  • [27]

    Krattenthaler, C., Advanced determinant calculus: A complement, Linear Al gebra Appl., 411 (2005), 68166.

  • [28]

    KÜÇÜk, A. Z. and DÜz, M., Relationships between the permanents of a certain type of k-tridiagonal symmetric Toeplitz matrix and the Chebyshev polynomials, J. Appl. Math. Comput. Mech., 16 (2017), 7586.

    • Search Google Scholar
    • Export Citation
  • [29]

    KÜÇÜk, A. Z., Özen, M. INCE, H., Recursive and combinational formulas for permanents of general k-tridiagonal Toeplitz matrices, Filomat, 33 (2019), 307317.

    • Search Google Scholar
    • Export Citation
  • [30]

    Lauret, E. A., The smallest Laplace eigenvalue of homogeneous 3-spheres, Bull. London Math. Soc., 51 (2019), 49-69.

  • [31]

    Lin, Y. and Lin, X., A novel algorithm for inverting a k-pentadiagonal matrix, The 2016 International Conference on Systems and Informatics (ICSAI 2016), 578582.

    • Search Google Scholar
    • Export Citation
  • [32]

    Losonczi, L., Eigenvalues and eigenvectors of some tridiagonal matrices, Acta Math. Hung., 60 (1992), 309332.

  • [33]

    Losonczi, L., On some discrete quadratic inequalities, Int. Ser. Numer. Math., 80 (1987), 7385.

  • [34]

    McMillen, T., On the eigenvalues of double band matrices, Linear Algebra Appl., 431 (2009), 18901897.

  • [35]

    El-Mikkawy, M., A generalized symbolic Thomas algorithm, Appl. Math., 3 (2012), 342345.

  • [36]

    El-Mikkawy, M. and Atlan, F., A fast and reliable algorithm for evaluating n-th order k-tridiagonal determinants, Malaysian J. Math. Sci., 3 (2015), 349365.

    • Search Google Scholar
    • Export Citation
  • [37]

    El-Mikkawy, M. and Atlan, F., A new recursive algorithm for inverting general k-tridiagonal matrices, Appl. Math. Lett., 44 (2015), 3439.

    • Search Google Scholar
    • Export Citation
  • [38]

    El-Mikkawy, M. and Atlan, F., A novel algorithm for inverting a general k- tridiagonal matrix, Appl. Math. Lett., 32 (2014), 4147.

  • [39]

    El-Mikkawy, M. and Sogabe, T., A new family of k-Fibonacci numbers, Appl. Math. Comput., 215 (2010), 44564461.

  • [40]

    OHASHI, A., SoGBE, T., and Usuda, T. S., On decomposition of k-tridiagonal l-Toeplitz matrices and its applications, Spec. Matrices, 3 (2015), 200206.

    • Search Google Scholar
    • Export Citation
  • [41]

    OKAYASU, T. and Ueta, Y., Estimates for moduli of coefficients of positive trigono- metric polynomials, Sci. Math. Jpn., 56 (2002), 115122.

    • Search Google Scholar
    • Export Citation
  • [42]

    Parter, S. V. and Youngs, J. W. T., The symmetrization of matrices by diagonal matrices, J. Math. Anal. Appl., 4 (1962), 102110.

  • [43]

    Popescu, G., Bohr inequalities for free holomorphic functions on polyballs, Adv. Math., 347 (2019), 10021053.

  • [44]

    Rimas, J., On computing of arbitrary positive integer powers for one type of sym metric pentadiagonal matrices of odd order, Appl. Math. Comput., 204 (2008), 120129.

    • Search Google Scholar
    • Export Citation
  • [45]

    Rimas, J., On computing of arbitrary positive integer powers for one type of symmetric pentadiagonal matrices of even order, Appl. Math. Comput., 203 (2008), 582591.

    • Search Google Scholar
    • Export Citation
  • [46]

    Rózsa, P., On periodic continuants, Linear Algebra Appl., 2 (1969) 267274.

  • [47]

    El-Shehawey, M. and El-Shreef, Gh. A., On a Markov chain roulette-type game, J. Phys. A.: Math. Theor., 42 (2009), 195005.

  • [48]

    SoGBE T., and El-Mikkawy, M., Fast block diagonalization of k-tridiagonal matrices, Appl. Math. Comput., 218 (2011), 27402743.

  • [49]

    SoGBE T., and Yilmaz, F., A note on a fast breakdown-free algorithm for computing the determinants and the permanents of fc-tridiagonal matrices, Appl. Math. Comput., 249 (2014), 98102.

    • Search Google Scholar
    • Export Citation
  • [50]

    Takahira, S., Sogbe T., and Usuda T. S., Bidiagonalization of (k,k + 1)- tridiagonal matrices, Spec. Matrices, 7 (2019), 2026.

  • [51]

    TĂnĂsescu, A. and Popescu, P. G., A fast singular value decomposition algorithm of general k-tridiagonal matrices, J. Comput. Sci., 31 (2019), 15.

    • Search Google Scholar
    • Export Citation
  • [52]

    Weisstein, E. W., Permutation Matrix. From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/PermutationMatrix.html

  • [53]

    WituLa, R. and SLota, D., On computing the determinants and inverses of some special type of tridiagonal and constant-diagonals matrices, Appl. Math. Comput, 189 (2007), 514527.

    • Search Google Scholar
    • Export Citation
  • [54]

    YalÇiner, A., The LU factorizations and determinants of the k-tridiagonal matri ces, Asian-Eur. J. Math., 4 (2011), 187197.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)