Authors:
Péter Kórus Department of Mathematics, Juhász Gyula Faculty of Education, University of Szeged, Hattyas utca 10, H-6725 Szeged, Hungary

Search for other papers by Péter Kórus in
Current site
Google Scholar
PubMed
Close
,
Luciano M. Lugo UNNE, FaCENA Ave. Libertad 5450, Corrientes 3400, Argentina

Search for other papers by Luciano M. Lugo in
Current site
Google Scholar
PubMed
Close
, and
Juan E. Nápoles Valdés UNNE, FaCENA Ave. Libertad 5450, Corrientes 3400, Argentina, UTN-FRRE, French 414, Resistencia, Chaco 3500, Argentina

Search for other papers by Juan E. Nápoles Valdés in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper we present different variants of the well-known Hermite–Hadamard inequality, in a generalized context. We consider general fractional integral operators for h-convex and r-convex functions.

  • [1]

    Dragomir, S. S., Pečarić, J. and Persson, L. E., Some inequalities of Hadamard Type, Soochow Journal of Mathematics, 21(3), (1995), 335341.

    • Search Google Scholar
    • Export Citation
  • [2]

    Fleitas, A., Méndez, J. A., Nápoles Valdés, J. E., and Sigarreta, J. M., On fractional LiénardâĂŞtype systems, Rev. Mexicana Fís., 65(6), (2019), 618625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [3]

    GODUNOVA, E. K. and Levin, V. I., Neravenstva dlja funkcii sirokogo klassa, soderzascego vypuklye, monotonnye i nekotorye drugie vidy funkii, Vycislitel. Mat. i. Fiz. Mezvuzov. Sb. Nauc. Trudov, MGPI, Moskva,., 9, (1985), 138142.

    • Search Google Scholar
    • Export Citation
  • [4]

    Guzman, P. M., Langton, G., Lugo, L. M., Medina, J. and Nápoles Valdés, J. E., A new definition of a fractional derivative of local type, J. Math. Anal., 9(2), (2018), 8898.

    • Search Google Scholar
    • Export Citation
  • [5]

    Khalil, R., Al Horani, M., Yousef, A. and Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264, (2014), 6570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [6]

    Martínez, F., Mohammed, P. O. and Nápoles Valdés, J. E., Non-Conformable Fractional Laplace Transform, Kragujevac J. Math., 46(3), (2022), 341354.

    • Search Google Scholar
    • Export Citation
  • [7]

    Nápoles Valdés, J. E., Guzman, P. M. and Lugo, L. M., Some New Results on Nonconformable Fractional Calculus, Adv. Dyn. Syst. Appl., 13(2), (2018), 167175.

    • Search Google Scholar
    • Export Citation
  • [8]

    Guzman, P. M., Lugo, L. M., NÃąoles ValdÃl’s, J. E. and Vivas-Cortez, M., On a New Generalized Integral Operator and Certain Operating Properties, Axioms, 9 (2020), 69.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [9]

    Nápoles Valdés, J. E., Guzman, P. M., Lugo, L. M. and Kashuri, A., The local generalized derivative and Mittag-Leffler function, Sigma Journal of Engineering and Natural Sciences, 38(2), (2020), 10071017.

    • Search Google Scholar
    • Export Citation
  • [10]

    Nápoles Valdés, J. E., Rodríguez, J. M. and Sigarreta, J. M., On Hermite-Hadamard type inequalities for non-conformable integral operators, Symmetry, 11(9), 1108 (2019).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [11]

    Ngoc, N. P. G., Vinh, N. V. and Hien, P. T. T., Integral inequalities of Hadamard-type for r-convex functions, International Mathematical Forum, 4, (2009), 17231728.

    • Search Google Scholar
    • Export Citation
  • [12]

    Yildiz, C., Ozdemir, M. E. and Onelan, H. K., Fractional integral inequalities for different functions, New Trends Math. Sci., 3(2), (2015), 110117.

    • Search Google Scholar
    • Export Citation
  • [13]

    Pearce, C. E. M., Pečarić, J. and Šimić, V., Stolarsky Means and Hadamard’s Inequality, J. Math. Anal. Appl., 220, (1998), 99109.

  • [14]

    Sarikaya, M. Z., Saglam, A. and Yildirim, H., On some Hadamard–type in equalities for h-convex functions, J. Math. Inequal., 2(3), (2008), 335341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [15]

    Sarikaya, M. Z., Set, E., Yaldiz, H. and Basak, N., Hermite–Hadamard’s in equalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling, 57, (2013), 24032407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [16]

    Varošanec, S., On h-convexity, J. Math. Anal. Appl., 326, (2007), 303311.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)