View More View Less
  • 1 Department of Mathematics, Juhász Gyula Faculty of Education, University of Szeged, Hattyas utca 10, H-6725 Szeged, Hungary
  • 2 UNNE, FaCENA Ave. Libertad 5450, Corrientes 3400, Argentina
  • 3 UNNE, FaCENA Ave. Libertad 5450, Corrientes 3400, Argentina, UTN-FRRE, French 414, Resistencia, Chaco 3500, Argentina
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

In this paper we present different variants of the well-known Hermite–Hadamard inequality, in a generalized context. We consider general fractional integral operators for h-convex and r-convex functions.

  • [1]

    Dragomir, S. S., Pečarić, J. and Persson, L. E., Some inequalities of Hadamard Type, Soochow Journal of Mathematics, 21(3), (1995), 335341.

    • Search Google Scholar
    • Export Citation
  • [2]

    Fleitas, A., Méndez, J. A., Nápoles Valdés, J. E., and Sigarreta, J. M., On fractional LiénardâĂŞtype systems, Rev. Mexicana Fís., 65(6), (2019), 618625.

    • Search Google Scholar
    • Export Citation
  • [3]

    GODUNOVA, E. K. and Levin, V. I., Neravenstva dlja funkcii sirokogo klassa, soderzascego vypuklye, monotonnye i nekotorye drugie vidy funkii, Vycislitel. Mat. i. Fiz. Mezvuzov. Sb. Nauc. Trudov, MGPI, Moskva,., 9, (1985), 138142.

    • Search Google Scholar
    • Export Citation
  • [4]

    Guzman, P. M., Langton, G., Lugo, L. M., Medina, J. and Nápoles Valdés, J. E., A new definition of a fractional derivative of local type, J. Math. Anal., 9(2), (2018), 8898.

    • Search Google Scholar
    • Export Citation
  • [5]

    Khalil, R., Al Horani, M., Yousef, A. and Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264, (2014), 6570.

    • Search Google Scholar
    • Export Citation
  • [6]

    Martínez, F., Mohammed, P. O. and Nápoles Valdés, J. E., Non-Conformable Fractional Laplace Transform, Kragujevac J. Math., 46(3), (2022), 341354.

    • Search Google Scholar
    • Export Citation
  • [7]

    Nápoles Valdés, J. E., Guzman, P. M. and Lugo, L. M., Some New Results on Nonconformable Fractional Calculus, Adv. Dyn. Syst. Appl., 13(2), (2018), 167175.

    • Search Google Scholar
    • Export Citation
  • [8]

    Guzman, P. M., Lugo, L. M., NÃąoles ValdÃl’s, J. E. and Vivas-Cortez, M., On a New Generalized Integral Operator and Certain Operating Properties, Axioms, 9 (2020), 69.

    • Search Google Scholar
    • Export Citation
  • [9]

    Nápoles Valdés, J. E., Guzman, P. M., Lugo, L. M. and Kashuri, A., The local generalized derivative and Mittag-Leffler function, Sigma Journal of Engineering and Natural Sciences, 38(2), (2020), 10071017.

    • Search Google Scholar
    • Export Citation
  • [10]

    Nápoles Valdés, J. E., Rodríguez, J. M. and Sigarreta, J. M., On Hermite-Hadamard type inequalities for non-conformable integral operators, Symmetry, 11(9), 1108 (2019).

    • Search Google Scholar
    • Export Citation
  • [11]

    Ngoc, N. P. G., Vinh, N. V. and Hien, P. T. T., Integral inequalities of Hadamard-type for r-convex functions, International Mathematical Forum, 4, (2009), 17231728.

    • Search Google Scholar
    • Export Citation
  • [12]

    Yildiz, C., Ozdemir, M. E. and Onelan, H. K., Fractional integral inequalities for different functions, New Trends Math. Sci., 3(2), (2015), 110117.

    • Search Google Scholar
    • Export Citation
  • [13]

    Pearce, C. E. M., Pečarić, J. and Šimić, V., Stolarsky Means and Hadamard’s Inequality, J. Math. Anal. Appl., 220, (1998), 99109.

    • Search Google Scholar
    • Export Citation
  • [14]

    Sarikaya, M. Z., Saglam, A. and Yildirim, H., On some Hadamard–type in equalities for h-convex functions, J. Math. Inequal., 2(3), (2008), 335341.

    • Search Google Scholar
    • Export Citation
  • [15]

    Sarikaya, M. Z., Set, E., Yaldiz, H. and Basak, N., Hermite–Hadamard’s in equalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling, 57, (2013), 24032407.

    • Search Google Scholar
    • Export Citation
  • [16]

    Varošanec, S., On h-convexity, J. Math. Anal. Appl., 326, (2007), 303311.