View More View Less
  • 1 Department of Mathematics, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, Yunus Emre Campus, Karaman–Turkey
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

In this study, a normalized form of regular Coulomb wave function is considered. By using the differential subordinations method due to Miller and Mocanu, we determine some conditions on the parameters such that the normalized regular Coulomb wave function is lemniscate starlike and exponential starlike in the open unit disk, respectively. In additon, by using the relationship between the regular Coulomb wave function and the Bessel function of the first kind we give some conditions for which the classical Bessel function of the first kind is lemniscate and exponential starlike in the unit disk 𝔻.

  • [1]

    Abramowitz, M. STEGUN, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1972.

    • Search Google Scholar
    • Export Citation
  • [2]

    Aktaş, İ., and Baricz, Á., Bounds for radii of starlikeness of some q-Bessel functions, Results Math., 72(1) (2017), 947963.

  • [3]

    Aktaş, İ., Baricz, Á. and Orhan, H., Bounds for the radii of starlikeness and convexity of some special functions, Turkish J. Math., 42(1) (2018), 211226.

    • Search Google Scholar
    • Export Citation
  • [4]

    Aktaş, İ., Baricz, Á. and Singh, S., Geometric and monotonic properties of hyper-Bessel functions, Ramanujan J., 51(2) (2020), 275295.

    • Search Google Scholar
    • Export Citation
  • [5]

    Aktaş, İ., Baricz, Á. and Yaámur, N., Bounds for the radii of univalence of some special functions, Math. Inequal. Appl., 20(3) (2017), 825843.

    • Search Google Scholar
    • Export Citation
  • [6]

    Aktaş, İ. and Orhan, H., Bounds for the radii of convexity of some q-Bessel functions, Bull. Korean Math. Soc., 57(2) (2020), 355369.

    • Search Google Scholar
    • Export Citation
  • [7]

    Ali, R. M., Cho, N. E., Ravichandran, V. and Kumar, S. S., Differential subor dination for functions associated with the lemniscate of Bernoulli, Taiwanese J. Math, 16(3) (2012), 10171026.

    • Search Google Scholar
    • Export Citation
  • [8]

    Baricz, Á., Geometric properties of generalized Bessel functions, Publ. Math. De brecen, 73 (2008), 155178.

  • [9]

    Baricz, Á., Turán type inequalities for regular Coulomb wave functions, J. Math. Anal. Appl., 430(1) (2015), 166180.

  • [10]

    Baricz, Á., Çálar, M., Deniz, E. and Toklu, E., Radii of starlikeness and convexity of regular Coulomb wave functions, arXiv:1605.06763

    • Search Google Scholar
    • Export Citation
  • [11]

    Baricz, Á., Kupán, P. a. and Szász, R., The radius of starlikeness of normalized Bessel functions of the first kind, Proc. Amer. Math. Soc., 142(6) (2014), 20192025.

    • Export Citation
  • [12]

    Baricz, Á. and Ponnusamy, S., Starlikeness and convexity of generalized Bessel functions, Integr. Transforms Spec. Funct., 21 (2010), 641653.

    • Search Google Scholar
    • Export Citation
  • [13]

    Baricz, Á. and Szász, R., The radius of convexity of normalized Bessel functions of the first kind, Anal. Appl., 12(5) (2014), 485509.

    • Search Google Scholar
    • Export Citation
  • [14]

    Baricz, Á. and Szász, R., Close-to-convexity of some special functions, Bull. Malay. Math. Sci. Soc., 39(1) (2016), 427437.

  • [15]

    Baricz, Á. and Yağmur, N., Geometric properties of some Lommel and Struve functions, Ramanujan J., 42(2) (2017), 325346.

  • [16]

    IKEBE, Y., The Zeros of Regular Coulomb Wave Functions and of Their Derivatives, Math. Comp., 29(131) (1975), 878887.

  • [17]

    JANOWSKI, W., Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math., 23 (1970), 159177.

    • Search Google Scholar
    • Export Citation
  • [18]

    Kanas, S., Differential subordination related to conic sections, J. Math. Anal. Appl., 317(2) (2006), 650658.

  • [19]

    Kumar, S. S., Kumar, V., Raviohandran, V. and Cho, N. E., Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli, J. Inequal. Appl. 2013, 2013: 176, 13 pp.

    • Search Google Scholar
    • Export Citation
  • [20]

    Ma, W. and Minda C. D., A unified treatment of some special classes of univalent functions, Proceedings of the International Conference on Complex Analysis at the Nankai Institute of Mathematics, (1992), 157169.

    • Export Citation
  • [21]

    Madaan, V., Kumar, A. and Raviohandran, V., Starlikeness Associated with Lemniscate of Bernoulli, Filomat, 33(7) (2019), 19371955.

  • [22]

    Madaan, V., Kumar, A. and Raviohandran, V., Lemniscate convexity and other properties of generalized Bessel functions, Studia Sci. Math. Hungar., 56(4) (2019), 404419.

    • Search Google Scholar
    • Export Citation
  • [23]

    Mendiratta, R., Nagpal, S. and Raviohandran, V., On a subclass of strongly starlike functions associated with exponantiel function, Bull. Malay. Math. Sci. Soc., 38(1) (2015), 365386.

    • Search Google Scholar
    • Export Citation
  • [24]

    Miller, S. S. and Mooanu, P. T., Differential Subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.

    • Search Google Scholar
    • Export Citation
  • [25]

    Miller, S. S. and Mooanu, P. T., Differential subordinations and univalent functions, The Michigan Math. J., 28(2) (1981), 157172.

  • [26]

    Naz, A., Nagpal, S. and Raviohandran, V., Starlikeness associated with the exponential function, Turkish J. Math., 43(3) (2019), 13531371.

    • Search Google Scholar
    • Export Citation
  • [27]

    Naz, A., Nagpal, S. and Raviohandran, V., Exponential starlikeness and con vexity of confluent hypergeometric, Lommel and Struve functions, Mediterr. J. Math., (Accepted).

    • Search Google Scholar
    • Export Citation
  • [28]

    Robertson, M. S., Certain classes of starlike functions, Michigan Math. J., 32(2) (1985), 135140.

  • [29]

    RØNNING, F., Uniformly convex functions and a corresponding class of star-like functions, Proc. Amer. Math. Soc., 118(1) (1993), 189196.

    • Export Citation
  • [30]

    Sokół, J. and Stankiewioz, J., Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech Rzeszowskiej Mat., 19 (1996), 101105.

    • Search Google Scholar
    • Export Citation
  • [31]

    Štampaoh, F. and ŠŤOVÍČEK, P., Orthogonal polynomials associated with Coulomb wave functions, J. Math. Anal. Appl., 419(1) (2014), 231254.

    • Search Google Scholar
    • Export Citation
  • [32]

    Toklu, E., Aktaş, İ. and Orhan, H., Radii problems for normalized q-Bessel and Wright functions, Acta Univ. Sapientiae, Mathematica, 11(1) (2019), 203223.

    • Search Google Scholar
    • Export Citation