View More View Less
  • 1 Department of Mathematics, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, Yunus Emre Campus, Karaman–Turkey
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

In this study, a normalized form of regular Coulomb wave function is considered. By using the differential subordinations method due to Miller and Mocanu, we determine some conditions on the parameters such that the normalized regular Coulomb wave function is lemniscate starlike and exponential starlike in the open unit disk, respectively. In additon, by using the relationship between the regular Coulomb wave function and the Bessel function of the first kind we give some conditions for which the classical Bessel function of the first kind is lemniscate and exponential starlike in the unit disk 𝔻.

  • [1]

    Abramowitz, M. STEGUN, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1972.

    • Search Google Scholar
    • Export Citation
  • [2]

    Aktaş, İ., and Baricz, Á., Bounds for radii of starlikeness of some q-Bessel functions, Results Math., 72(1) (2017), 947963.

  • [3]

    Aktaş, İ., Baricz, Á. and Orhan, H., Bounds for the radii of starlikeness and convexity of some special functions, Turkish J. Math., 42(1) (2018), 211226.

    • Search Google Scholar
    • Export Citation
  • [4]

    Aktaş, İ., Baricz, Á. and Singh, S., Geometric and monotonic properties of hyper-Bessel functions, Ramanujan J., 51(2) (2020), 275295.

    • Search Google Scholar
    • Export Citation
  • [5]

    Aktaş, İ., Baricz, Á. and Yaámur, N., Bounds for the radii of univalence of some special functions, Math. Inequal. Appl., 20(3) (2017), 825843.

    • Search Google Scholar
    • Export Citation
  • [6]

    Aktaş, İ. and Orhan, H., Bounds for the radii of convexity of some q-Bessel functions, Bull. Korean Math. Soc., 57(2) (2020), 355369.

    • Search Google Scholar
    • Export Citation
  • [7]

    Ali, R. M., Cho, N. E., Ravichandran, V. and Kumar, S. S., Differential subor dination for functions associated with the lemniscate of Bernoulli, Taiwanese J. Math, 16(3) (2012), 10171026.

    • Search Google Scholar
    • Export Citation
  • [8]

    Baricz, Á., Geometric properties of generalized Bessel functions, Publ. Math. De brecen, 73 (2008), 155178.

  • [9]

    Baricz, Á., Turán type inequalities for regular Coulomb wave functions, J. Math. Anal. Appl., 430(1) (2015), 166180.

  • [10]

    Baricz, Á., Çálar, M., Deniz, E. and Toklu, E., Radii of starlikeness and convexity of regular Coulomb wave functions, arXiv:1605.06763

    • Search Google Scholar
    • Export Citation
  • [11]

    Baricz, Á., Kupán, P. a. and Szász, R., The radius of starlikeness of normalized Bessel functions of the first kind, Proc. Amer. Math. Soc., 142(6) (2014), 20192025.

    • Search Google Scholar
    • Export Citation
  • [12]

    Baricz, Á. and Ponnusamy, S., Starlikeness and convexity of generalized Bessel functions, Integr. Transforms Spec. Funct., 21 (2010), 641653.

    • Search Google Scholar
    • Export Citation
  • [13]

    Baricz, Á. and Szász, R., The radius of convexity of normalized Bessel functions of the first kind, Anal. Appl., 12(5) (2014), 485509.

    • Search Google Scholar
    • Export Citation
  • [14]

    Baricz, Á. and Szász, R., Close-to-convexity of some special functions, Bull. Malay. Math. Sci. Soc., 39(1) (2016), 427437.

  • [15]

    Baricz, Á. and Yağmur, N., Geometric properties of some Lommel and Struve functions, Ramanujan J., 42(2) (2017), 325346.

  • [16]

    IKEBE, Y., The Zeros of Regular Coulomb Wave Functions and of Their Derivatives, Math. Comp., 29(131) (1975), 878887.

  • [17]

    JANOWSKI, W., Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math., 23 (1970), 159177.

    • Search Google Scholar
    • Export Citation
  • [18]

    Kanas, S., Differential subordination related to conic sections, J. Math. Anal. Appl., 317(2) (2006), 650658.

  • [19]

    Kumar, S. S., Kumar, V., Raviohandran, V. and Cho, N. E., Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli, J. Inequal. Appl. 2013, 2013: 176, 13 pp.

    • Search Google Scholar
    • Export Citation
  • [20]

    Ma, W. and Minda C. D., A unified treatment of some special classes of univalent functions, Proceedings of the International Conference on Complex Analysis at the Nankai Institute of Mathematics, (1992), 157169.

    • Search Google Scholar
    • Export Citation
  • [21]

    Madaan, V., Kumar, A. and Raviohandran, V., Starlikeness Associated with Lemniscate of Bernoulli, Filomat, 33(7) (2019), 19371955.

  • [22]

    Madaan, V., Kumar, A. and Raviohandran, V., Lemniscate convexity and other properties of generalized Bessel functions, Studia Sci. Math. Hungar., 56(4) (2019), 404419.

    • Search Google Scholar
    • Export Citation
  • [23]

    Mendiratta, R., Nagpal, S. and Raviohandran, V., On a subclass of strongly starlike functions associated with exponantiel function, Bull. Malay. Math. Sci. Soc., 38(1) (2015), 365386.

    • Search Google Scholar
    • Export Citation
  • [24]

    Miller, S. S. and Mooanu, P. T., Differential Subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.

    • Search Google Scholar
    • Export Citation
  • [25]

    Miller, S. S. and Mooanu, P. T., Differential subordinations and univalent functions, The Michigan Math. J., 28(2) (1981), 157172.

  • [26]

    Naz, A., Nagpal, S. and Raviohandran, V., Starlikeness associated with the exponential function, Turkish J. Math., 43(3) (2019), 13531371.

    • Search Google Scholar
    • Export Citation
  • [27]

    Naz, A., Nagpal, S. and Raviohandran, V., Exponential starlikeness and con vexity of confluent hypergeometric, Lommel and Struve functions, Mediterr. J. Math., (Accepted).

    • Search Google Scholar
    • Export Citation
  • [28]

    Robertson, M. S., Certain classes of starlike functions, Michigan Math. J., 32(2) (1985), 135140.

  • [29]

    RØNNING, F., Uniformly convex functions and a corresponding class of star-like functions, Proc. Amer. Math. Soc., 118(1) (1993), 189196.

    • Search Google Scholar
    • Export Citation
  • [30]

    Sokół, J. and Stankiewioz, J., Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech Rzeszowskiej Mat., 19 (1996), 101105.

    • Search Google Scholar
    • Export Citation
  • [31]

    Štampaoh, F. and ŠŤOVÍČEK, P., Orthogonal polynomials associated with Coulomb wave functions, J. Math. Anal. Appl., 419(1) (2014), 231254.

    • Search Google Scholar
    • Export Citation
  • [32]

    Toklu, E., Aktaş, İ. and Orhan, H., Radii problems for normalized q-Bessel and Wright functions, Acta Univ. Sapientiae, Mathematica, 11(1) (2019), 203223.

    • Search Google Scholar
    • Export Citation

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)