View More View Less
  • 1 School of General Education, Shinshu University
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

We give two new simple characterizations of the Cauchy distribution by using the Möbius and Mellin transforms. They also yield characterizations of the circular Cauchy distribution and the mixture Cauchy model.

  • [1]

    Arnold, B. C., Some characterizations of the Cauchy distribution, Austral. J. Statist., 21(2) (1979), 166169.

  • [2]

    Arnold, B. C. and Norton, R. M., On Cauchy-like distributions, Sankhyā Ser. A, 52(3) (1990), 371375.

  • [3]

    Bell, C. B. and Sarma, Y. R., A characterization of the Cauchy distribution, Trabajos Estadíst. Investigación Oper., 36(1) (1985), 37.

    • Search Google Scholar
    • Export Citation
  • [4]

    Chin, W., Jung, P. and Markowsky, G., A note on invariance of the Cauchy and related distributions, Statist. Probab. Lett., 158 (2020), 108668, 6.

    • Search Google Scholar
    • Export Citation
  • [5]

    Dunau, J.-L. and Sénateur, H., An elementary proof of the Knight-Meyer characterization of the Cauchy distribution, J. Multivariate Anal., 22(1) (1987), 7478.

    • Search Google Scholar
    • Export Citation
  • [6]

    Galambos, J. and Simonelli, I., Products of random variables, Monographs and Textbooks in Pure and Applied Mathematics, vol. 268, Marcel Dekker, Inc., New York, 2004.

    • Search Google Scholar
    • Export Citation
  • [7]

    Hamedani, G. G., Characterizations of Cauchy, normal, and uniform distributions, Studia Sci. Math. Hungar., 28(3–4) (1993), 243247.

    • Search Google Scholar
    • Export Citation
  • [8]

    Hassenforder, C., An extension of Knight’s theorem on Cauchy distribution, J. Theoret. Probab., 1(2) (1988), 205209.

  • [9]

    Knight, F. B. and Meyer, P. A., Une caractérisation de la loi de Cauchy, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 34(2) (1976), 129134.

    • Search Google Scholar
    • Export Citation
  • [10]

    Knight, F. B., A characterization of the Cauchy type, Proc. Amer. Math. Soc., 55(1) (1976), 130135.

    • Export Citation
  • [11]

    Lehmann, E. L., Elements of large-sample theory, Springer-Verlag, 1999.

  • [12]

    Letac, G., Which functions preserve Cauchy laws?, Proc. Amer. Math. Soc., 67(2) (1977), 277286.

    • Export Citation
  • [13]

    McCullagh, P., Möbius transformation and Cauchy parameter estimation, Ann. Statist., 24(2) (1996), 787808.

  • [14]

    Menon, M. V., A characterization of the Cauchy distribution, Ann. Math. Statist., 33 (1962), 12671271.

  • [15]

    Menon, M. V., Another characteristic property of the Cauchy distribution, Ann. Math. Statist., 37 (1966), 289294.

  • [16]

    Norton, R. M., A characterization of the Cauchy distribution, Sankhyā Ser. A, 45(2) (1983), 247252.

  • [17]

    Obretenov, A., A property characterizing the Cauchy distribution, Fiz.-Mat. Spis. Bulgar. Akad. Nauk., 4(37) (1961), 4043.

  • [18]

    Ramachandran. B. and Radhakrishna Rao, C., Solutions of functional equations arising in some regression problems and a characterization of the Cauchy law, Sankhyā Ser. A, 32 (1970), 130.

    • Search Google Scholar
    • Export Citation
  • [19]

    Rudin, W., Real and complex analysis, third ed., McGraw-Hill Book Co., New York, 1987.

  • [20]

    Williams, E. J., Cauchy-distributed functions and a characterization of the Cauchy distribution, Ann. Math. Statist., 40 (1969), 10831085.

    • Search Google Scholar
    • Export Citation
  • [21]

    Yanushkevichius, R., Stability of the Ramachandran-Rao characterization of the Cauchy distribution, J. Math. Sci. (N. Y.), 146(4) (2007), 60666070.

    • Search Google Scholar
    • Export Citation
  • [22]

    Yanushkevichius, R., On stability estimates of a characterization of the Cauchy distribution, J. Math. Sci. (N. Y.), 200(4) (2014), 505506.

    • Search Google Scholar
    • Export Citation
  • [23]

    Zolotarev, V. M., One-dimensional stable distributions, American Mathematical Society, 1986.