View More View Less
  • 1 School of Mathematics and Systems Science, Xinjiang University, Urumqi 830046, P. R. China
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Let be a Schrödinger operator on the Heisenberg group n, where Δn is the sublaplacian on n and the nonnegative potential V belongs to the reverse Hölder class Bq with q[Q/2,+). Here  Q=2n+2 is the homogeneous dimension of n. Assume that {esL}s>0 is the heat semigroup generated byL. The Lusin area integral SL;α and the Littlewood–Paley–Stein function gλ,L* associated with the Schrödinger operator L are defined, respectively, by

SL;α(f)(u):=Γα(u)sddsesLf(υ)2dυdssQ/2+11/2,

where

Γα(u):={(υ,s)n×(0,+):u1υ<αs},

and

gλ,L*(f)(u):=0nss+u1υ2λsddsesLf(υ)2dυdssQ/2+11/2 ,

Where λ(0,+) is a parameter. In this article, the author shows that there is a relationship between SL;α and the operator gλ,L* and for any 1p<, the following inequality holds true:

SL;2j(f)LpnC2jQ/2+2jQ/psL(f)Lp(n).

Based on this inequality and known results for the Lusin area integral SL;1, the author establishes the strong-type and weak-type estimates for the Littlewood–Paley–Stein function gλ,L* on Lp(n). In this article, the author also introduces a class of Morrey spaces associated with the Schrödinger operator L on n. By using some pointwise estimates of the kernels related to the nonnegative potential V, the author establishes the boundedness properties of the operator gλ,L* acting on the Morrey spaces for an appropriate choice of λ>0. It can be shown that the same conclusions hold for the operator gλ,L* on generalized Morrey spaces as well.

  • [1]

    Adams, D. R., Morrey Spaces, Lecture notes in applied and numerical harmonic analysis, Birkhäuser/Springer, Cham, 2015.

  • [2]

    Adams, D. R. and Xiao, J., Morrey spaces in harmonic analysis, Ark. Mat., 50 (2012), 201230.

  • [3]

    Adams, D. R. and Xiao, J., Nonlinear potential analysis on Morrey spaces and their capacities, Indiana Univ. Math. J., 53 (2004), 16291663.

    • Search Google Scholar
    • Export Citation
  • [4]

    Bongioanni, B., Harboure, E. and Salinas, O., Classes of weights related to Schrödinger operators, J. Math. Anal. Appl., 373 (2011), 563579.

    • Search Google Scholar
    • Export Citation
  • [5]

    Bongioanni, B., Harboure, E. and Salinas, O., Weighted inequalities for commutators of Schrödinger-Riesz transforms, J. Math. Anal. Appl., 392 (2012), 622.

    • Search Google Scholar
    • Export Citation
  • [6]

    Bongioanni, B., Cabral, A. and Harboure, E., Extrapolation for classes of weights related to a family of operators and applications, Potential Anal., 38 (2013), 12071232.

    • Search Google Scholar
    • Export Citation
  • [7]

    Bongioanni, B., Cabral, A. and Harboure, E., Lerner’s inequality associated to a critical radius function and applications, J. Math. Anal. Appl., 407 (2013), 3555.

    • Search Google Scholar
    • Export Citation
  • [8]

    Bui, T. A., Weighted estimates for commutators of some singular integrals related to Schrödinger operators, Bull. Sci. Math., 138 (2014), 270292.

    • Search Google Scholar
    • Export Citation
  • [9]

    Chanillo, S. and Wheeden, R. L., Some weighted norm inequalities for the area integral, Indiana Univ. Math. J., 36 (1987), 277294.

  • [10]

    Chiarenza, F. and Frasca, M., Morrey spaces and Hardy-Littlewood maximal function, Rend. Math. Appl., 7 (1987), 273279.

  • [11]

    Dziubański, J. and Zienkiewicz, J., Hardy spaces associated with some Schrödinger operators, Studia Math., 126 (1997), 149160.

  • [12]

    Dziubański, J. and Zienkiewicz, J., Hardy space H p associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Rev. Mat. Ibero-americana, 15 (1999), 279296.

    • Search Google Scholar
    • Export Citation
  • [13]

    Dziubański, J. and Zienkiewicz, J., Hp spaces associated with Schrödinger operators with potentials from reverse Hölder classes, Colloq. Math., 98 (2003), 538.

    • Search Google Scholar
    • Export Citation
  • [14]

    Dziubański, J., Garrigós, G., Martínez, T., Torrea, J. L. and Zienkiewicz, J., BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z., 249 (2005), 329356.

    • Search Google Scholar
    • Export Citation
  • [15]

    Di Fazio, G. and Ragusa, M. A., Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal., 112 (1993), 241256.

    • Search Google Scholar
    • Export Citation
  • [16]

    Di Fazio, G., Palagachev, D. K. and Ragusa, M. A., Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients, J. Funct. Anal., 166 (1999), 179196.

    • Search Google Scholar
    • Export Citation
  • [17]

    Fefferman, C., Inequalities for strongly singular convolution operators, Acta Math., 124 (1970), 936.

  • [18]

    Folland, G. B., Harmonic Analysis in Phase Space, Annals of Mathematics Studies, Princeton Univ. Press, Princeton, New Jersey, 1989.

  • [19]

    Folland, G. B. and Stein, E. M., Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, 1982.

  • [20]

    Folland, G. B. and Stein, E. M., Estimates for the ¯ bcomplex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429522.

    • Search Google Scholar
    • Export Citation
  • [21]

    Goldstein, J. A., Semigroups of Linear Operators and Applications, Oxford Univ. Press, New York, 1985.

  • [22]

    Guliyev, V. S., Eroglu, A. and Mammadov, Y. Y., Riesz potential in generalized Morrey spaces on the Heisenberg group, J. Math. Sci. (N. Y.), 189 (2013), 365382.

    • Search Google Scholar
    • Export Citation
  • [23]

    Guliyev, V. S., Guliyev, R. V., Omarova, M. N. and Ragusa, M. A., Schrödinger type operators on local generalized Morrey spaces related to cer-tain nonnegative potentials, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 671690.

    • Search Google Scholar
    • Export Citation
  • [24]

    Hofmann, S., Lu, G. Z., Mitrea, D., Mitrea, M. and Yan, L. X., Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, Mem. Amer. Math. Soc., 214 (2011).

    • Search Google Scholar
    • Export Citation
  • [25]

    Jiang, R. J., Jiang, X. J. and Yang, D. C., Maximal function characterizations of Hardy spaces associated with Schrödinger operators on nilpotent Lie groups, Rev. Mat. Complut., 24 (2011), 251275.

    • Search Google Scholar
    • Export Citation
  • [26]

    Li, H. Q., Estimations Lp des opérateurs de Schrödinger sur les groupes nilpotents, J. Funct. Anal., 161 (1999), 152218.

  • [27]

    Li, P. T., Wan, X. and Zhang, C. Y., Schrödinger type operators on generalized Morrey spaces, J. Inequal. Appl., 2015, 21 pp.

  • [28]

    Lin, C. C. and Liu, H. P.,B M O L ( n ) spaces and Carleson measures for Schrödinger operators, Adv. Math., 228 (2011), 16311688.

  • [29]

    Lu, G. Z., A Fefferman-Phong type inequality for degenerate vector fields and applications, Panamer. Math. J., 6 (1996), 3757.

  • [30]

    Mizuhara, T., Boundedness of some classical operators on generalized Morrey spaces, Harmonic Analysis, ICM-90 Satellite Conference Proceedings, Springer-Verlag, Tokyo, (1991), 183189.

    • Search Google Scholar
    • Export Citation
  • [31]

    orrey, C. B., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126166.

  • [32]

    Muckenhoupt, B. and Wheeden, R. L., Norm inequalities for the LittlewoodPaley function g λ *, Trans. Amer. Math. Soc., 191 (1974), 95111.

    • Search Google Scholar
    • Export Citation
  • [33]

    Olsen, P., Fractional integration, Morrey spaces and a Schrödinger equation, Comm. Partial Differential Equations, 20 (1995), 20052055.

    • Search Google Scholar
    • Export Citation
  • [34]

    Pan, G. X. and Tang, L., Boundedness for some Schrödinger type operators on weighted Morrey spaces, J. Funct. Spaces, 2014, Art. ID 878629, 10 pp.

    • Search Google Scholar
    • Export Citation
  • [35]

    Peetre, J., On the theory of L p , λ, spaces, J. Funct. Anal., 4 (1969), 7187.

  • [36]

    Shen, Z. W., Lp estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble), 45 (1995), 513546.

  • [37]

    Song, L. and Yan, L. X., Riesz transforms associated to Schrödinger operators on weighted Hardy spaces, J. Funct. Anal., 259 (2010), 14661490.

    • Search Google Scholar
    • Export Citation
  • [38]

    Stein, E. M., On the functions of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer. Math. Soc., 88 (1958), 430466.

  • [39]

    Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970.

  • [40]

    Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, New Jersey, 1993.

    • Search Google Scholar
    • Export Citation
  • [41]

    Tang, L., Weighted norm inequalities for Schrödinger type operators, Forum Math., 27 (2015), 24912532.

  • [42]

    Tang, L. and Dong, J. F., Boundedness for some Schrödinger type operators on Morrey spaces related to certain nonnegative potentials, J. Math. Anal. Appl., 355 (2009), 101109.

    • Search Google Scholar
    • Export Citation
  • [43]

    Taylor, M. E., Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations, 17 (1992), 14071456.

    • Search Google Scholar
    • Export Citation
  • [44]

    Thangavelu, S., Harmonic Analysis on the Heisenberg Group, Progress in Mathematics, Vol. 159, Birkhäuser, Boston/Basel/Berlin, 1998.

  • [45]

    Torchinsky, A., Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986.

  • [46]

    Wang, H., Morrey spaces for Schrödinger operators with nonnegative potentials, fractional integral operators and the Adams inequality on the Heisenberg groups, J. Math. Anal. Appl., 482 (2020), 123523, 25 pp.

    • Search Google Scholar
    • Export Citation
  • [47]

    Wang, H., Morrey spaces for Schrödinger operators with certain nonnegative potentials, Littlewood-Paley and Lusin functions on the Heisenberg groups, Banach J. Math. Anal., 14 (2020), 15321557.

    • Search Google Scholar
    • Export Citation
  • [48]

    Zhao, J. M., Littlewood-Paley and Lusin functions on nilpotent Lie groups, Bull. Sci. Math., 132 (2008), 425438.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)