Let be a Schrödinger operator on the Heisenberg group
where
and
Where
Based on this inequality and known results for the Lusin area integral
Adams, D. R., Morrey Spaces, Lecture notes in applied and numerical harmonic analysis, Birkhäuser/Springer, Cham, 2015.
Adams, D. R. and Xiao, J., Morrey spaces in harmonic analysis, Ark. Mat., 50 (2012), 201–230.
Adams, D. R. and Xiao, J., Nonlinear potential analysis on Morrey spaces and their capacities, Indiana Univ. Math. J., 53 (2004), 1629–1663.
Bongioanni, B., Harboure, E. and Salinas, O., Classes of weights related to Schrödinger operators, J. Math. Anal. Appl., 373 (2011), 563–579.
Bongioanni, B., Harboure, E. and Salinas, O., Weighted inequalities for commutators of Schrödinger-Riesz transforms, J. Math. Anal. Appl., 392 (2012), 6–22.
Bongioanni, B., Cabral, A. and Harboure, E., Extrapolation for classes of weights related to a family of operators and applications, Potential Anal., 38 (2013), 1207–1232.
Bongioanni, B., Cabral, A. and Harboure, E., Lerner’s inequality associated to a critical radius function and applications, J. Math. Anal. Appl., 407 (2013), 35–55.
Bui, T. A., Weighted estimates for commutators of some singular integrals related to Schrödinger operators, Bull. Sci. Math., 138 (2014), 270–292.
Chanillo, S. and Wheeden, R. L., Some weighted norm inequalities for the area integral, Indiana Univ. Math. J., 36 (1987), 277–294.
Chiarenza, F. and Frasca, M., Morrey spaces and Hardy-Littlewood maximal function, Rend. Math. Appl., 7 (1987), 273–279.
Dziubański, J. and Zienkiewicz, J., Hardy spaces associated with some Schrödinger operators, Studia Math., 126 (1997), 149–160.
Dziubański, J. and Zienkiewicz, J., Hardy space H p associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Rev. Mat. Ibero-americana, 15 (1999), 279–296.
Dziubański, J. and Zienkiewicz, J., Hp spaces associated with Schrödinger operators with potentials from reverse Hölder classes, Colloq. Math., 98 (2003), 5–38.
Dziubański, J., Garrigós, G., Martínez, T., Torrea, J. L. and Zienkiewicz, J., BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z., 249 (2005), 329–356.
Di Fazio, G. and Ragusa, M. A., Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal., 112 (1993), 241–256.
Di Fazio, G., Palagachev, D. K. and Ragusa, M. A., Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients, J. Funct. Anal., 166 (1999), 179–196.
Fefferman, C., Inequalities for strongly singular convolution operators, Acta Math., 124 (1970), 9–36.
Folland, G. B., Harmonic Analysis in Phase Space, Annals of Mathematics Studies, Princeton Univ. Press, Princeton, New Jersey, 1989.
Folland, G. B. and Stein, E. M., Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, 1982.
Folland, G. B. and Stein, E. M., Estimates for the ∂ ¯ bcomplex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429–522.
Goldstein, J. A., Semigroups of Linear Operators and Applications, Oxford Univ. Press, New York, 1985.
Guliyev, V. S., Eroglu, A. and Mammadov, Y. Y., Riesz potential in generalized Morrey spaces on the Heisenberg group, J. Math. Sci. (N. Y.), 189 (2013), 365–382.
Guliyev, V. S., Guliyev, R. V., Omarova, M. N. and Ragusa, M. A., Schrödinger type operators on local generalized Morrey spaces related to cer-tain nonnegative potentials, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 671–690.
Hofmann, S., Lu, G. Z., Mitrea, D., Mitrea, M. and Yan, L. X., Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, Mem. Amer. Math. Soc., 214 (2011).
Jiang, R. J., Jiang, X. J. and Yang, D. C., Maximal function characterizations of Hardy spaces associated with Schrödinger operators on nilpotent Lie groups, Rev. Mat. Complut., 24 (2011), 251–275.
Li, H. Q., Estimations Lp des opérateurs de Schrödinger sur les groupes nilpotents, J. Funct. Anal., 161 (1999), 152–218.
Li, P. T., Wan, X. and Zhang, C. Y., Schrödinger type operators on generalized Morrey spaces, J. Inequal. Appl., 2015, 21 pp.
Lin, C. C. and Liu, H. P.,B M O L ( ℍ n ) spaces and Carleson measures for Schrödinger operators, Adv. Math., 228 (2011), 1631–1688.
Lu, G. Z., A Fefferman-Phong type inequality for degenerate vector fields and applications, Panamer. Math. J., 6 (1996), 37–57.
Mizuhara, T., Boundedness of some classical operators on generalized Morrey spaces, Harmonic Analysis, ICM-90 Satellite Conference Proceedings, Springer-Verlag, Tokyo, (1991), 183–189.
orrey, C. B., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126–166.
Muckenhoupt, B. and Wheeden, R. L., Norm inequalities for the LittlewoodPaley function g λ *, Trans. Amer. Math. Soc., 191 (1974), 95–111.
Olsen, P., Fractional integration, Morrey spaces and a Schrödinger equation, Comm. Partial Differential Equations, 20 (1995), 2005–2055.
Pan, G. X. and Tang, L., Boundedness for some Schrödinger type operators on weighted Morrey spaces, J. Funct. Spaces, 2014, Art. ID 878629, 10 pp.
Peetre, J., On the theory of L p , λ, spaces, J. Funct. Anal., 4 (1969), 71–87.
Shen, Z. W., Lp estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble), 45 (1995), 513–546.
Song, L. and Yan, L. X., Riesz transforms associated to Schrödinger operators on weighted Hardy spaces, J. Funct. Anal., 259 (2010), 1466–1490.
Stein, E. M., On the functions of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer. Math. Soc., 88 (1958), 430–466.
Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970.
Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, New Jersey, 1993.
Tang, L., Weighted norm inequalities for Schrödinger type operators, Forum Math., 27 (2015), 2491–2532.
Tang, L. and Dong, J. F., Boundedness for some Schrödinger type operators on Morrey spaces related to certain nonnegative potentials, J. Math. Anal. Appl., 355 (2009), 101–109.
Taylor, M. E., Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations, 17 (1992), 1407–1456.
Thangavelu, S., Harmonic Analysis on the Heisenberg Group, Progress in Mathematics, Vol. 159, Birkhäuser, Boston/Basel/Berlin, 1998.
Torchinsky, A., Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986.
Wang, H., Morrey spaces for Schrödinger operators with nonnegative potentials, fractional integral operators and the Adams inequality on the Heisenberg groups, J. Math. Anal. Appl., 482 (2020), 123523, 25 pp.
Wang, H., Morrey spaces for Schrödinger operators with certain nonnegative potentials, Littlewood-Paley and Lusin functions on the Heisenberg groups, Banach J. Math. Anal., 14 (2020), 1532–1557.
Zhao, J. M., Littlewood-Paley and Lusin functions on nilpotent Lie groups, Bull. Sci. Math., 132 (2008), 425–438.