Authors:
Siwar Hkimi Tunis El Manar University, Faculty of Sciences of Tunis, Department of Mathematics, CAMPUS, 2092 Tunis, Tunisia

Search for other papers by Siwar Hkimi in
Current site
Google Scholar
PubMed
Close
,
Hatem Mejjaoli Taibah University, College of Sciences, Department of Mathematics, PO BOX 30002 Al Madinah AL Munawarah, Saudi Arabia

Search for other papers by Hatem Mejjaoli in
Current site
Google Scholar
PubMed
Close
, and
Slim Omri Tunis El Manar University, Faculty of Sciences of Tunis, Department of Mathematics, CAMPUS, 2092 Tunis, Tunisia

Search for other papers by Slim Omri in
Current site
Google Scholar
PubMed
Close
Restricted access

We introduce the directional short-time Fourier transform for which we prove a new Plancherel’s formula. We also prove for this transform several uncertainty principles as Heisenberg inequalities, logarithmic uncertainty principle, Faris–Price uncertainty principles and Donoho–Stark’s uncertainty principles.

  • [1]

    Atanasova, S., Pilipovi’c, S. and Saneva, K., Directional time-frequency analysis and directional regularity, Bull. Malays. Math. Sci. Soc., 42 (2019), 20752090.

    • Search Google Scholar
    • Export Citation
  • [2]

    Beckner, W., Pitt’s inequality and the uncertainty principle, Proc. Amer. Math. Soc., 123 (1995), 18971905.

  • [3]

    Bialynicki-Birula, I., Entropic uncertainty relations in quantum mechanics, in Quantum probability and applications II, pages 90–103. Springer, 1985.

    • Search Google Scholar
    • Export Citation
  • [4]

    Bonami, A. Demange, B. and Jaming, P., Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms, Revista Matemàtica Iberoamericana, 19(1) (2003), 2355.

    • Search Google Scholar
    • Export Citation
  • [5]

    Candès, E. J., Harmonic Analysis of Neural Networks, Appl. Comput. Harmon. Anal., 6(2) (1999), 197218.

  • [6]

    Candès, E. J. and Donoho, D. L., New tight frames of curvelets and optimal representations of objects with piesewise-C2 singularities, Comm. Pure Appl. Math., 57 (2004), 219266.

    • Search Google Scholar
    • Export Citation
  • [7]

    Cook, C. E, and Bernfeld, M., Radar Signals An Introduction to Theory and Applications, Academic Press, New York, 1967.

  • [8]

    Donoho, D. L. and Stark, P. B., Uncertainty principles and signal recovery, SIAM Journal on Applied Mathematics, 49(3) (1989), 906931.

    • Search Google Scholar
    • Export Citation
  • [9]

    Faris, W. G., Inequalities and uncertainty principles, J. Math. Phys., 19 (1978), 461466.

  • [10]

    Folland, G-B. and Sitaram, A., The uncertainty principle: a Mathematical survey, Journal of Fourier analysis and applications, 3(3) (1997), 207238.

    • Search Google Scholar
    • Export Citation
  • [11]

    Gabor, D., Theory of communication. Part 1: The analysis of information, Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 93(26) (1946), 429441.

    • Search Google Scholar
    • Export Citation
  • [12]

    Grafakos, L. and Sansing, C., Gabor frames and directional time–frequency analysis, Applied and Computational Harmonic Analysis, 25(1) (2008), 4767.

    • Search Google Scholar
    • Export Citation
  • [13]

    Gröchenig, K., Foundations of time-frequency analysis, Springer Science & Business Media, 2013.

  • [14]

    Havin, V. and Jöricke, B., The uncertainty principle in harmonic analysis, volume 24, Berlin: Springer Verlag, 1994.

  • [15]

    Heisenberg, W., Über den anschaulichen Inhalt der quantentheoretischen Kinematic und Mechanik, Zeitschrift fÃijr Physik, 43 (1927),172âĂŞ-198; The Physical Principles of the Quantum Theory (Dover, New York, 1949; The Univ. Chicago Press, 1930).

    • Search Google Scholar
    • Export Citation
  • [16]

    Helgason, S., The Radon Transform, Progress in Mathematics, Birkhäuser Boston, 1999.

  • [17]

    Hosseini Giv, H., Directional short-time Fourier transform, Journal of Mathematical Analysis and Applications, 399(1) (2013), 100107.

    • Search Google Scholar
    • Export Citation
  • [18]

    Mejjaoli, H. and Omri, S., Spectral theorems associated with the directional short-time Fourier transform, Journal of Pseudo-Differential Operators and Applications, 11 (2020), 1554.

    • Search Google Scholar
    • Export Citation
  • [19]

    Price, J. F., Inequalities and local uncertainty principles, Math. Phys., 24 (1978), 17111714.

  • [20]

    Price, J. F., Sharp local uncertainty principles, Studia Math., 85, (1987), 3745.

  • [21]

    Price, J. F. and Sitaram, A., Local uncertainty inequalities for locally compact groups, Trans. Amer. Math. Soc., 308 (1988), 105114.

    • Search Google Scholar
    • Export Citation
  • [22]

    Ricaud, B. and Torrésani, B., A survey of uncertainty principles and some signal processing applications, Adv. Comput. Math., 40(3) (2014), 629650.

    • Search Google Scholar
    • Export Citation
  • [23]

    Saneva, K. H.-V. and Atanasova, S., Directional short-time Fourier transform of distributions, Journal of Inequalities and Applications, 2016(124) (2016).

    • Search Google Scholar
    • Export Citation
  • [24]

    Shannon, C-E., A mathematical theory of communication, ACM SIGMOBILE Mobile Computing and Communications Review, 5(1) (2001), 355.

  • [25]

    Woodward, P. M., Probability and information theory, with applicetions to radar, Pergamon Press, Oxford, second edition, 1964.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)