We introduce the directional short-time Fourier transform for which we prove a new Plancherel’s formula. We also prove for this transform several uncertainty principles as Heisenberg inequalities, logarithmic uncertainty principle, Faris–Price uncertainty principles and Donoho–Stark’s uncertainty principles.
Atanasova, S., Pilipovi’c, S. and Saneva, K., Directional time-frequency analysis and directional regularity, Bull. Malays. Math. Sci. Soc., 42 (2019), 2075–2090.
Beckner, W., Pitt’s inequality and the uncertainty principle, Proc. Amer. Math. Soc., 123 (1995), 1897–1905.
Bialynicki-Birula, I., Entropic uncertainty relations in quantum mechanics, in Quantum probability and applications II, pages 90–103. Springer, 1985.
Bonami, A. Demange, B. and Jaming, P., Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms, Revista Matemàtica Iberoamericana, 19(1) (2003), 23–55.
Candès, E. J., Harmonic Analysis of Neural Networks, Appl. Comput. Harmon. Anal., 6(2) (1999), 197–218.
Candès, E. J. and Donoho, D. L., New tight frames of curvelets and optimal representations of objects with piesewise-C2 singularities, Comm. Pure Appl. Math., 57 (2004), 219–266.
Cook, C. E, and Bernfeld, M., Radar Signals An Introduction to Theory and Applications, Academic Press, New York, 1967.
Donoho, D. L. and Stark, P. B., Uncertainty principles and signal recovery, SIAM Journal on Applied Mathematics, 49(3) (1989), 906–931.
Faris, W. G., Inequalities and uncertainty principles, J. Math. Phys., 19 (1978), 461–466.
Folland, G-B. and Sitaram, A., The uncertainty principle: a Mathematical survey, Journal of Fourier analysis and applications, 3(3) (1997), 207–238.
Gabor, D., Theory of communication. Part 1: The analysis of information, Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 93(26) (1946), 429–441.
Grafakos, L. and Sansing, C., Gabor frames and directional time–frequency analysis, Applied and Computational Harmonic Analysis, 25(1) (2008), 47–67.
Gröchenig, K., Foundations of time-frequency analysis, Springer Science & Business Media, 2013.
Havin, V. and Jöricke, B., The uncertainty principle in harmonic analysis, volume 24, Berlin: Springer Verlag, 1994.
Heisenberg, W., Über den anschaulichen Inhalt der quantentheoretischen Kinematic und Mechanik, Zeitschrift fÃijr Physik, 43 (1927),172âĂŞ-198; The Physical Principles of the Quantum Theory (Dover, New York, 1949; The Univ. Chicago Press, 1930).
Helgason, S., The Radon Transform, Progress in Mathematics, Birkhäuser Boston, 1999.
Hosseini Giv, H., Directional short-time Fourier transform, Journal of Mathematical Analysis and Applications, 399(1) (2013), 100–107.
Mejjaoli, H. and Omri, S., Spectral theorems associated with the directional short-time Fourier transform, Journal of Pseudo-Differential Operators and Applications, 11 (2020), 15–54.
Price, J. F., Inequalities and local uncertainty principles, Math. Phys., 24 (1978), 1711–1714.
Price, J. F., Sharp local uncertainty principles, Studia Math., 85, (1987), 37–45.
Price, J. F. and Sitaram, A., Local uncertainty inequalities for locally compact groups, Trans. Amer. Math. Soc., 308 (1988), 105–114.
Ricaud, B. and Torrésani, B., A survey of uncertainty principles and some signal processing applications, Adv. Comput. Math., 40(3) (2014), 629–650.
Saneva, K. H.-V. and Atanasova, S., Directional short-time Fourier transform of distributions, Journal of Inequalities and Applications, 2016(124) (2016).
Shannon, C-E., A mathematical theory of communication, ACM SIGMOBILE Mobile Computing and Communications Review, 5(1) (2001), 3–55.
Woodward, P. M., Probability and information theory, with applicetions to radar, Pergamon Press, Oxford, second edition, 1964.