View More View Less
  • 1 Mathematics Hakim Sabzevari University, Sabzevar, IRAN
  • | 2 Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, P.O. Box 397, IRAN
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper, we define an orthonormal basis for 2-*-inner product space and obtain some useful results. Moreover, we introduce a 2-norm on a dense subset of a 2-*-inner product space. Finally, we obtain a version of the Selberg, Buzano’s and Bessel inequality and its results in an A-2-inner product space.

  • [1]

    Cho, Y. J., Lin, P. C. S., Kim, S. S. and Misiak, A., Theory of 2-inner Product Spaces, New York, Nova Science Publishes, Inc., 2001.

  • [2]

    Diminnie, C., Gahler, S. and White, A., 2-Inner Product Spaces II, Demonstratio Mathematica, X(1), (1977), 169183.

  • [3]

    Fragoulopoulou, M., Topological Algebras with Involution, Elsevier, 2005.

  • [4]

    Freese, R. W. and Gahler, S., On Semi-2-Normed Spaces, Math. Nachr., 105 (1982), 151161.

  • [5]

    Joita, M., Hilbert Modules Over Locally C -Algebras, Editura Universitatii din Bucuresti, 2006.

  • [6]

    Mallios, A., Topological Algebras: Selected Topics, North Holland, Amsterdam, 1986.

  • [7]

    Misiak, A., n-Inner Product Space, Math Nachr, 140 (1989), 299319.

  • [8]

    Mohebbi Najmabadi, B. and Shateri, T. L., 2-inner product which takes values on a locally C-algebra, Indian J. Math. Soc., 85 (2018), 218226.

    • Search Google Scholar
    • Export Citation
  • [9]

    Philips, N. C., Inverse limits of C-algebras, J. Operator Theory, 19 (1988), 159195.