View More View Less
  • 1 Abdelmalek Essaadi University, , FSTH, Department of Mathematics, Al hoceima, , Morocco
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

This paper is concerned with the existence of solutions to a class of p(x)-Kirchhoff-type equations with Robin boundary data as follows:

MΩ1p(x)up(x)dx+Ωβ(x)p(x)up(x)dσdiv(up(x)-2u)=f(x,u)inΩ,
up(x)2uv+β(x)up(x)2u=0 on Ω,

Where βL(Ω) and f:Ω× satisfies Carathéodory condition. By means of variational methods and the theory of the variable exponent Sobolev spaces, we establish conditions for the existence of weak solutions.

  • [1]

    E. Acerbi and G. Mingione. Gradient estimate for the p(x)-Laplacian system J. Reine Angew. Math., 584:117148, 2005.

  • [2]

    G. A. Afrouzi and H. Ghorbani. Existence of positive solutions for a class of p(x)-Laplacian problems Nonlinear Studies., 4 547554, 2012.

    • Search Google Scholar
    • Export Citation
  • [3]

    G. A. Afrouzi, A. Hadjian and S. Heidarkhani. Steklov problems involving the p(x)-Laplacian Electron. J. Difl. Equ., 134 111, 2014.

  • [4]

    M. Allaoui, A. El Amrouss and A. Ourraoui. Existence and multiplicity of solutions for a Steklov problem involving the p(x)-Laplace operator Electron. J. Difl. Equ., 132 112, 2012.

    • Search Google Scholar
    • Export Citation
  • [5]

    M. Allaoui, A. El Amrouss and A. Ourraoui. Existence of infinitely many solutions for a Steklov problem involving the p(x)-Laplace operator Electron. J. Qual. Theory Difler. Equ., 20 110, 2014.

    • Search Google Scholar
    • Export Citation
  • [6]

    M. Allaoui. Existence of solutions for a robin problem involving the p(x)-laplace operator Abstract and Applied Analysis, 2016 18, 2016

    • Search Google Scholar
    • Export Citation
  • [7]

    A. Ambrosetti and P. Rabinowitz. Dual variational methods in critical point theory and applications J. Funct. Anal., 14 349381, 1973.

  • [8]

    G. Bonanno, A. Chinnì, Multiple solutions for elliptic problems involving the p(x)-Laplacian, Le Matematiche., 66:105113, 2011.

  • [9]

    F. Cammaroto, A. Chinnì and B. Di Bella. Multiple solutions for a Neumann problem involving the p(x)-Laplacian, Nonlinear Anal., 71:44864492, 2009.

    • Search Google Scholar
    • Export Citation
  • [10]

    F. Cammaroto and L. Vilasi. Multiple solutions for a Kirchhoff-type problem involving the p(x)-Laplacian operator, Nonlinear Analysis 74 18411852, 2011.

    • Search Google Scholar
    • Export Citation
  • [11]

    F. Cammaroto andL. Vilasi. Three solutions for some Dirichlet and Neumann nonlocal problems, Applicable Analysis 92 17171730, 2013.

  • [12]

    F. Cammaroto andL. Vilasi.Multiplicity results for a Neumann boundary value problem involving the p(x)-Laplacian, Taiwanese Journal of Mathematics 16 621634, 2012.

    • Search Google Scholar
    • Export Citation
  • [13]

    Y. Chen, S. Levine andM. Rao. Variable exponent, linear growth functionals in image processing, SIAM J. Appl. Math 66 13831406, 2006.

  • [14]

    F. J. S. A. Corrêa and G. M. Figueiredo. On an elliptic equation of p-Kirchhoff type via variational methods, Bull. Aust. Math. Soc 74 263277, 2006.

    • Search Google Scholar
    • Export Citation
  • [15]

    F. J. S. A. Corrêa and G. M. Figueiredo. On a p-Kirchhoff equation via Krasnoselskii’s genus, Appl. Math. Letters, 22:819822, 2009.

    • Search Google Scholar
    • Export Citation
  • [16]

    S. G. Deng. Positive solutions for Robin problem involving the p(x)-Laplacian, J. Math. Anal. Appl 360 548560, 2009.

  • [17]

    D. E. Edmunds andJ. R. ákosník. Density of smooth functions in Wk,p(x)(Ω), Proc. R. Soc. A 437 229236, 1992.

  • [18]

    D. E. Edmunds andJ. Rákosník. Sobolev embedding with variable exponent, Studia Math 143 267293, 2000.

  • [19]

    X. L. Fan, J. S. Shen andD. Zhao. Sobolev embedding theorems for spaces Wk,p(x)(Ω), J. Math. Anal. Appl 262 749760, 2001.

  • [20]

    X. L. Fan andD. Zhao. On the spaces Lp( x) and Wm,p( x), J. Math. Anal. Appl 263 424446, 2001.

  • [21]

    X. L. Fan andQ. H. Zhang. Existence of solutions for p(x)-Laplacian Dirichlet problems, Nonlinear Anal 52 18431852, 2003.

  • [22]

    X. L. Fan. Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients, J. Mathh. Anal. Appl 300 3042, 2004.

  • [23]

    X. L. Fan. On nonlocal p(x)-Laplacian Dirichlet problems, Nonlinear Anal., 72:33143323, 2010.

  • [24]

    B. Ge andQ. Zhou. Multiple solutions for a Robin-type differential inclusion problem involving the p(x)-Laplacian, Math. Meth. Appl. Sci., 2013, doi: .

  • [25]

    C. Ji. Remarks on the existence of three solutions for the p(x)-Laplacian equations, Nonlinear Anal., 74:29082915, 2011.

  • [26]

    G. Kirchhoff. Mechanik, Teubner, Leipzig, 1883.

  • [27]

    O. Kováčik and J. Rákosník. On the spaces Lp(x)(Ω) and W1,p(x)(Ω), Czechoslovak Math. J., 41:592618, 1991.

  • [28]

    S.B. Liu andS. J. Li. Infinitely many solutions for a superlinear elliptic equation Acta Math. Sinica 46 625630, 2003.

  • [29]

    J. L. Lions. On some questions in boundary value problems of mathematical physics, in Proceedings of international Symposium on Continuum Mechanics and Partial Differential Equations, Rio de Janeiro 1977, 30:284346, 1978, de la Penha, Medeiros (Eds.), Math. Stud., North-Holland.

    • Search Google Scholar
    • Export Citation
  • [30]

    L. Vilasi. Eigenvalue estimate for stationary p(x)-Kirchhoff problems, Electronic Journal of Differential Equations., 186:19, 2016.

  • [31]

    M. Willem. Minimax Theorems, Birkhauser, Basel, 1996.

  • [32]

    V. V. Zhikov. Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv 9 3366, 1987.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
submission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)