Authors:
Nata Gogolashvili The University of Georgia, School of science and technology, 77a Merab Kostava St, Tbilisi 0128, Georgia

Search for other papers by Nata Gogolashvili in
Current site
Google Scholar
PubMed
Close
and
George Tephnadze The University of Georgia, School of science and technology, 77a Merab Kostava St, Tbilisi 0128, Georgia
Department of Computer Science and Computational Engineering, UiT - The Arctic University of Norway, P.O. Box 385, N-8505, Narvik, Norway

Search for other papers by George Tephnadze in
Current site
Google Scholar
PubMed
Close
Restricted access

In this paper we prove and discuss some new (Hp, Lp,∞) type inequalities of the maximal operators of T means with monotone coefficients with respect to Walsh–Kaczmarz system. It is also proved that these results are the best possible in a special sense. As applications, both some well-known and new results are pointed out. In particular, we apply these results to prove a.e. convergence of such T means.

  • [1]

    L. Baramidze, L. E. Persson, G. Tephnadze and P. Wall. Srtong summability and Boundedness of Maximal operators of Vilenkin–Nörlund means with non-increasing coefficients/ J. Inequal. Appl., 2016.

    • Search Google Scholar
    • Export Citation
  • [2]

    I. Blahota, K. Nagy. Approximation by Θ-means of Walsh–Fourier series. Anal. Math., 44(1):5771, 2018.

  • [3]

    I. Blahota, K. Nagy and G. Tephnadze. Approximation by Mar-cinkiewicz Θ-means of double Walsh–Fourier series. Math. Inequal. Appl., 22(3):837853, 2019.

    • Search Google Scholar
    • Export Citation
  • [4]

    I. Blahota and G. Gát.Norm summability of Nörlund logarithmic means on unbounded Vilenkin groups. Anal. Theory Appl.,24(1):117, 2008.

    • Search Google Scholar
    • Export Citation
  • [5]

    I. Blahota and G. Tephnadze.On the (C, a)-means with respect to the Walsh system. Anal. Math., 40:161174, 2014.

  • [6]

    I. Blahota and G. Tephnadze.Strong convergence theorem for Vilenkin-Fejér means. Publ. Math. Debrecen,85(1–2):181196, 2014.

  • [7]

    I. Blahota, L. E. Persson and G. Tephnadze. On the Nörlund means of Vilenkin-Fourier series. Czechoslovak Math. J., 65(4):9831002, 2015.

    • Search Google Scholar
    • Export Citation
  • [8]

    G. Gát. Investigations of certain operators with respect to the Vilenkin system. Acta Math. Hungar,61(1–2):131149, 1993.

  • [9]

    G. Gát. On (C, 1) summability of integrable functions with respect to the Walsh–Kaczmarz system. Studia Math., 130(2):135148, 1998.

    • Search Google Scholar
    • Export Citation
  • [10]

    G. Gát and U. Goginava. A weak type inequality for the maximal operator of (C, a)-means of Fourier series with respect to the Walsh–Kaczmarz system. Acta Math. Hungar,125(1–2):6583, 2009.

    • Search Google Scholar
    • Export Citation
  • [11]

    U. Goginava. The maximal operator of the Fejér means of the character system of the p-series field in the Kaczmarz rearrangement. Publ.Math.Debrecen,71(1–2):4355, 2007.

    • Search Google Scholar
    • Export Citation
  • [12]

    U. Goginava and K. Nagy. On the maximal operator of (C, a)-means of Walsh–Kaczmarz–Fourier series. Ukrainian Math. J., 62(2):175185, 2010.

    • Search Google Scholar
    • Export Citation
  • [13]

    N. Gogolashvili, K. Nagy and G. Tephnadze. Strong convergence theorem for Walsh–Kaczmarz-Fejér means. Mediterr. J. Math., 18(2):37, 2021.

    • Search Google Scholar
    • Export Citation
  • [14]

    D. Lukkassen, L.-E. Persson, G. Tephnadze and G. Tutberidze. Some inequalities related to strong convergence of Riesz logarithmic means of Vilenkin-Fourier series. J. Inequal. Appl., 2020.

    • Search Google Scholar
    • Export Citation
  • [15]

    I. Marcinkiewicz and A. Zygmund.On the summability of double Fourier series. Fund. Math.,32:112132, 1939.

  • [16]

    N. Memić, L. E. Persson and G. Tephnadze.A note on the maximal operators of Vilenkin–Nörlund means with non-increasing coefficients. Stud. Sci. Math. Hung.,53(4):545556, (2016).

    • Search Google Scholar
    • Export Citation
  • [17]

    K. Nagy and U. Goginava.Maximal operators of Walsh–Kaczmarz logarithmic means. Complex Var. Elliptic Equ.,58(9):11731182, 2013.

  • [18]

    C. N. Moore. Summable series and convergence factors. Dover Publications, Inc., New York 1966.

  • [19]

    F. Móricz and A. H. Siddiqi. Approximation by Nörlund means of Walsh–Fourier series. J. Approx. Theory,70(3):375389, 1992.

  • [20]

    K. Nagy. Approximation by Cesàro means of negative order of Walsh–Kaczmarz–Fourier series. East J. Approx,16(3):297311, 2010.

  • [21]

    K. Nagy. Approximation by Nörlund means of quadratical partial sums of double Walsh–Fourier series. Anal. Math,36(4):299319, 2010.

    • Search Google Scholar
    • Export Citation
  • [22]

    K. Nagy. Approximation by Nörlund means of double Walsh–Fourier series for Lipschitz functions. Math. Inequal. Appl.,15(2):301322, 2012.

    • Search Google Scholar
    • Export Citation
  • [23]

    K. Nagy and G. Tephnadze.Approximation by Walsh–Kaczmarz-Marcinkiewicz means on the Hardy space H2/3. Bulletin of TICMI,18(1):110121, 2014.

    • Search Google Scholar
    • Export Citation
  • [24]

    K. Nagy and G. Tephnadze. On the Walsh-Marcinkiewicz means on the Hardy space. Cent. Eur. J. Math., 12(8):12141228, 2014.

  • [25]

    K. Nagy and G. Tephnadze. Approximation by Walsh-Marcinkiewicz means on the Hardy space. Kyoto J. Math., 54(3):641652, 2014.

  • [26]

    K. Nagy and G. Tephnadze.Kaczmarz-Marcinkiewicz means and Hardy spaces. Acta math. Hung.,149(2):346374, 2016.

  • [27]

    K. Nagy and G. Tephnadze.Strong convergence theorem for Walsh-Marcinkiewicz means. Math. Inequal. Appl.,19(1):185195, 2016.

  • [28]

    L. E. Persson, G. Tephnadze and P. Wall. Maximal operators of Vilenkin–Nörlund means. J. Fourier Anal. Appl., 21(1):7694, 2015.

  • [29]

    L. E. Persson, G. Tephnadze and P. Wall.On the Nörlund logarithmic means with respect to Vilenkin system in the martingale Hardy space H1. Acta math. Hung.,154(2):289301, 2018.

    • Search Google Scholar
    • Export Citation
  • [30]

    L. E. Persson, G. Tephnadze and G. Tutberidze.On the boundedness of subsequences of Vilenkin-Fejér means on the martingale. Hardy spaces, operators and matrices,14(1):283294, 2020.

    • Search Google Scholar
    • Export Citation
  • [31]

    L. E. Persson, G. Tephnadze, G. Tutberidze and P. Wall. Strong summability result of Vilenkin-Fejér means on bounded Vilenkin groups. Ukr. Math. J.. (To appear.)

    • Search Google Scholar
    • Export Citation
  • [32]

    F. Schipp. Pointwise convergence of expansions with respect to certain product systems. Anal. Math,2(1):6576, 1976.

  • [33]

    F. Schipp, W. R. Wade, P. Simon and J. Pál. Walsh series. An introduction to dyadic harmonic analysis. With the collaboration of J. Pál. Adam Hilger, Ltd., Bristol, 1990.

    • Search Google Scholar
    • Export Citation
  • [34]

    P. Simon. On the Cesáro summability with respect to the Walsh–Kaczmarz system. J. Approx. Theory,106(2):249261, 2000.

  • [35]

    P. Simon. Cesáro summability with respect to two-parameter Walsh systems. Monatsh. Math,131(4):321334, 2000.

  • [36]

    V. A. Skvorcov. On Fourier series with respect to the Walsh–Kaczmarz system. Anal. Math,7(2):141150, 1981.

  • [37]

    A. Šne˘ıder. On series of Walsh functions with monotonic coefficients. Izvestiya Akad. Nauk SSSR. Ser. Mat. 12:179192, 1948. (In Russian.)

    • Search Google Scholar
    • Export Citation
  • [38]

    G. Tephnadze. On the maximal operators of Kaczmarz-Nörlund means. Acta Math. Acad. Paed. Nyíreg.,31:259271, 2015.

  • [39]

    G. Tephnadze. On the maximal operators of Walsh–Kaczmarz–Fejér means. Period. Math. Hungar.,67(1):3345, 2013.

  • [40]

    G. Tephnadze. Approximation by Walsh–Kaczmarz-Fejér means on the Hardy space. Acta Math., Sci. Ser. B Engl. Ed.,34(5):15931602, 2014.

    • Search Google Scholar
    • Export Citation
  • [41]

    G. Tephnadze. Fejér means of Vilenkin-Fourier series. Studia Sci. Math. Hungar.,49(1):7990, 2012.

  • [42]

    G. Tephnadze. The maximal operators of logarithmic means of one-dimensional Vilenkin-Fourier series. Acta Math. Acad. Paed-agog. Nyházi., (N.S.) 27(2):245256, 2011.

    • Search Google Scholar
    • Export Citation
  • [43]

    G. Tephnadze. On the maximal operators of Kaczmarz-Nörlund means. Acta Math. Acad. Paed. Nyíreg.,31:259271, 2015.

  • [44]

    G. Tephnadze and G. Tutberidze.A note on the maximal operators of the Nörlund logaritmic means of Vilenkin-Fourier series. Transactions of A. Razmadze Math. Inst.,174(1):1070112, 2020.

    • Search Google Scholar
    • Export Citation
  • [45]

    G. Tutberidze. Maximal operators of T means with respect to the Vilenkin system. Nonlinear Studies, 27(4):111, 2020.

  • [46]

    G. Tutberidze. Modulus of continuity and boundedness of subsequences of Vilenkin-Fejér means in the martingale Hardy spaces. Georgian Math. J.. (To appear.)

    • Search Google Scholar
    • Export Citation
  • [47]

    W. S. Young. On the a. e. convergence of Walsh–Kaczmarz–Fourier series.Proc. Amer. Math. Soc.,44:353358, 1974.

  • [48]

    F. Weisz. Martingale Hardy spaces and their applications in Fourier analysis. Lecture Notes in Mathematics, 1568, Springer-Verlag, Berlin, 1994.

    • Search Google Scholar
    • Export Citation
  • [49]

    F. Weisz. Summability of multidimensional Fourier series and Hardy spaces. Mathematics and its Applications, 541. Kluwer Academic Publishers, Dordrecht 2002.

    • Search Google Scholar
    • Export Citation
  • [50]

    F. Weisz. 8-summability of Fourier series. Acta Math. Hungar,103(1–2):139175, 2004.

  • [51]

    F. Weisz. 8-summation and Hardy spaces. J. Approx. Theory, 107:121142, 2000.

  • [52]

    F. Weisz. Several dimensional 8-summability and Hardy spaces. Math. Nachr.,230:159180, 2001.

  • [53]

    F. Weisz. Marcinkiewicz-8-summability of double Fourier series. Annales Univ. Sci. Budapest., Sect. Comp.,24:103118, 2004.

  • [54]

    F. Weisz. Marcinkiewicz-8-summability of Fourier transforms. Acta Math. Hungar,96(1–2):149160, 2002.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)