In this paper we prove and discuss some new (Hp, Lp,∞) type inequalities of the maximal operators of T means with monotone coefficients with respect to Walsh–Kaczmarz system. It is also proved that these results are the best possible in a special sense. As applications, both some well-known and new results are pointed out. In particular, we apply these results to prove a.e. convergence of such T means.
L. Baramidze, L. E. Persson, G. Tephnadze and P. Wall. Srtong summability and Boundedness of Maximal operators of Vilenkin–Nörlund means with non-increasing coefficients/ J. Inequal. Appl., 2016.
I. Blahota, K. Nagy. Approximation by Θ-means of Walsh–Fourier series. Anal. Math., 44(1):57–71, 2018.
I. Blahota, K. Nagy and G. Tephnadze. Approximation by Mar-cinkiewicz Θ-means of double Walsh–Fourier series. Math. Inequal. Appl., 22(3):837–853, 2019.
I. Blahota and G. Gát.Norm summability of Nörlund logarithmic means on unbounded Vilenkin groups. Anal. Theory Appl.,24(1):1–17, 2008.
I. Blahota and G. Tephnadze.On the (C, a)-means with respect to the Walsh system. Anal. Math., 40:161–174, 2014.
I. Blahota and G. Tephnadze.Strong convergence theorem for Vilenkin-Fejér means. Publ. Math. Debrecen,85(1–2):181–196, 2014.
I. Blahota, L. E. Persson and G. Tephnadze. On the Nörlund means of Vilenkin-Fourier series. Czechoslovak Math. J., 65(4):983–1002, 2015.
G. Gát. Investigations of certain operators with respect to the Vilenkin system. Acta Math. Hungar,61(1–2):131–149, 1993.
G. Gát. On (C, 1) summability of integrable functions with respect to the Walsh–Kaczmarz system. Studia Math., 130(2):135–148, 1998.
G. Gát and U. Goginava. A weak type inequality for the maximal operator of (C, a)-means of Fourier series with respect to the Walsh–Kaczmarz system. Acta Math. Hungar,125(1–2):65–83, 2009.
U. Goginava. The maximal operator of the Fejér means of the character system of the p-series field in the Kaczmarz rearrangement. Publ.Math.Debrecen,71(1–2):43–55, 2007.
U. Goginava and K. Nagy. On the maximal operator of (C, a)-means of Walsh–Kaczmarz–Fourier series. Ukrainian Math. J., 62(2):175–185, 2010.
N. Gogolashvili, K. Nagy and G. Tephnadze. Strong convergence theorem for Walsh–Kaczmarz-Fejér means. Mediterr. J. Math., 18(2):37, 2021.
D. Lukkassen, L.-E. Persson, G. Tephnadze and G. Tutberidze. Some inequalities related to strong convergence of Riesz logarithmic means of Vilenkin-Fourier series. J. Inequal. Appl., 2020.
I. Marcinkiewicz and A. Zygmund.On the summability of double Fourier series. Fund. Math.,32:112–132, 1939.
N. Memić, L. E. Persson and G. Tephnadze.A note on the maximal operators of Vilenkin–Nörlund means with non-increasing coefficients. Stud. Sci. Math. Hung.,53(4):545–556, (2016).
K. Nagy and U. Goginava.Maximal operators of Walsh–Kaczmarz logarithmic means. Complex Var. Elliptic Equ.,58(9):1173–1182, 2013.
C. N. Moore. Summable series and convergence factors. Dover Publications, Inc., New York 1966.
F. Móricz and A. H. Siddiqi. Approximation by Nörlund means of Walsh–Fourier series. J. Approx. Theory,70(3):375–389, 1992.
K. Nagy. Approximation by Cesàro means of negative order of Walsh–Kaczmarz–Fourier series. East J. Approx,16(3):297–311, 2010.
K. Nagy. Approximation by Nörlund means of quadratical partial sums of double Walsh–Fourier series. Anal. Math,36(4):299–319, 2010.
K. Nagy. Approximation by Nörlund means of double Walsh–Fourier series for Lipschitz functions. Math. Inequal. Appl.,15(2):301–322, 2012.
K. Nagy and G. Tephnadze.Approximation by Walsh–Kaczmarz-Marcinkiewicz means on the Hardy space H2/3. Bulletin of TICMI,18(1):110–121, 2014.
K. Nagy and G. Tephnadze. On the Walsh-Marcinkiewicz means on the Hardy space. Cent. Eur. J. Math., 12(8):1214–1228, 2014.
K. Nagy and G. Tephnadze. Approximation by Walsh-Marcinkiewicz means on the Hardy space. Kyoto J. Math., 54(3):641–652, 2014.
K. Nagy and G. Tephnadze.Kaczmarz-Marcinkiewicz means and Hardy spaces. Acta math. Hung.,149(2):346–374, 2016.
K. Nagy and G. Tephnadze.Strong convergence theorem for Walsh-Marcinkiewicz means. Math. Inequal. Appl.,19(1):185–195, 2016.
L. E. Persson, G. Tephnadze and P. Wall. Maximal operators of Vilenkin–Nörlund means. J. Fourier Anal. Appl., 21(1):76–94, 2015.
L. E. Persson, G. Tephnadze and P. Wall.On the Nörlund logarithmic means with respect to Vilenkin system in the martingale Hardy space H1. Acta math. Hung.,154(2):289–301, 2018.
L. E. Persson, G. Tephnadze and G. Tutberidze.On the boundedness of subsequences of Vilenkin-Fejér means on the martingale. Hardy spaces, operators and matrices,14(1):283–294, 2020.
L. E. Persson, G. Tephnadze, G. Tutberidze and P. Wall. Strong summability result of Vilenkin-Fejér means on bounded Vilenkin groups. Ukr. Math. J.. (To appear.)
F. Schipp. Pointwise convergence of expansions with respect to certain product systems. Anal. Math,2(1):65–76, 1976.
F. Schipp, W. R. Wade, P. Simon and J. Pál. Walsh series. An introduction to dyadic harmonic analysis. With the collaboration of J. Pál. Adam Hilger, Ltd., Bristol, 1990.
P. Simon. On the Cesáro summability with respect to the Walsh–Kaczmarz system. J. Approx. Theory,106(2):249–261, 2000.
P. Simon. Cesáro summability with respect to two-parameter Walsh systems. Monatsh. Math,131(4):321–334, 2000.
V. A. Skvorcov. On Fourier series with respect to the Walsh–Kaczmarz system. Anal. Math,7(2):141–150, 1981.
A. Šne˘ıder. On series of Walsh functions with monotonic coefficients. Izvestiya Akad. Nauk SSSR. Ser. Mat. 12:179–192, 1948. (In Russian.)
G. Tephnadze. On the maximal operators of Kaczmarz-Nörlund means. Acta Math. Acad. Paed. Nyíreg.,31:259–271, 2015.
G. Tephnadze. On the maximal operators of Walsh–Kaczmarz–Fejér means. Period. Math. Hungar.,67(1):33–45, 2013.
G. Tephnadze. Approximation by Walsh–Kaczmarz-Fejér means on the Hardy space. Acta Math., Sci. Ser. B Engl. Ed.,34(5):1593–1602, 2014.
G. Tephnadze. Fejér means of Vilenkin-Fourier series. Studia Sci. Math. Hungar.,49(1):79–90, 2012.
G. Tephnadze. The maximal operators of logarithmic means of one-dimensional Vilenkin-Fourier series. Acta Math. Acad. Paed-agog. Nyházi., (N.S.) 27(2):245–256, 2011.
G. Tephnadze. On the maximal operators of Kaczmarz-Nörlund means. Acta Math. Acad. Paed. Nyíreg.,31:259–271, 2015.
G. Tephnadze and G. Tutberidze.A note on the maximal operators of the Nörlund logaritmic means of Vilenkin-Fourier series. Transactions of A. Razmadze Math. Inst.,174(1):1070–112, 2020.
G. Tutberidze. Maximal operators of T means with respect to the Vilenkin system. Nonlinear Studies, 27(4):1–11, 2020.
G. Tutberidze. Modulus of continuity and boundedness of subsequences of Vilenkin-Fejér means in the martingale Hardy spaces. Georgian Math. J.. (To appear.)
W. S. Young. On the a. e. convergence of Walsh–Kaczmarz–Fourier series.Proc. Amer. Math. Soc.,44:353–358, 1974.
F. Weisz. Martingale Hardy spaces and their applications in Fourier analysis. Lecture Notes in Mathematics, 1568, Springer-Verlag, Berlin, 1994.
F. Weisz. Summability of multidimensional Fourier series and Hardy spaces. Mathematics and its Applications, 541. Kluwer Academic Publishers, Dordrecht 2002.
F. Weisz. 8-summability of Fourier series. Acta Math. Hungar,103(1–2):139–175, 2004.
F. Weisz. 8-summation and Hardy spaces. J. Approx. Theory, 107:121–142, 2000.
F. Weisz. Several dimensional 8-summability and Hardy spaces. Math. Nachr.,230:159–180, 2001.
F. Weisz. Marcinkiewicz-8-summability of double Fourier series. Annales Univ. Sci. Budapest., Sect. Comp.,24:103–118, 2004.
F. Weisz. Marcinkiewicz-8-summability of Fourier transforms. Acta Math. Hungar,96(1–2):149–160, 2002.