View More View Less
  • 1 The University of Georgia, School of science and technology, 77a Merab Kostava St, Tbilisi 0128, Georgia
  • | 2 Department of Computer Science and Computational Engineering, UiT - The Arctic University of Norway, P.O. Box 385, N-8505, Narvik, Norway
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper we prove and discuss some new (Hp, Lp,∞) type inequalities of the maximal operators of T means with monotone coefficients with respect to Walsh–Kaczmarz system. It is also proved that these results are the best possible in a special sense. As applications, both some well-known and new results are pointed out. In particular, we apply these results to prove a.e. convergence of such T means.

  • [1]

    L. Baramidze, L. E. Persson, G. Tephnadze and P. Wall. Srtong summability and Boundedness of Maximal operators of Vilenkin–Nörlund means with non-increasing coefficients/ J. Inequal. Appl., 2016.

    • Search Google Scholar
    • Export Citation
  • [2]

    I. Blahota, K. Nagy. Approximation by Θ-means of Walsh–Fourier series. Anal. Math., 44(1):5771, 2018.

  • [3]

    I. Blahota, K. Nagy and G. Tephnadze. Approximation by Mar-cinkiewicz Θ-means of double Walsh–Fourier series. Math. Inequal. Appl., 22(3):837853, 2019.

    • Search Google Scholar
    • Export Citation
  • [4]

    I. Blahota and G. Gát.Norm summability of Nörlund logarithmic means on unbounded Vilenkin groups. Anal. Theory Appl.,24(1):117, 2008.

    • Search Google Scholar
    • Export Citation
  • [5]

    I. Blahota and G. Tephnadze.On the (C, a)-means with respect to the Walsh system. Anal. Math., 40:161174, 2014.

  • [6]

    I. Blahota and G. Tephnadze.Strong convergence theorem for Vilenkin-Fejér means. Publ. Math. Debrecen,85(1–2):181196, 2014.

  • [7]

    I. Blahota, L. E. Persson and G. Tephnadze. On the Nörlund means of Vilenkin-Fourier series. Czechoslovak Math. J., 65(4):9831002, 2015.

    • Search Google Scholar
    • Export Citation
  • [8]

    G. Gát. Investigations of certain operators with respect to the Vilenkin system. Acta Math. Hungar,61(1–2):131149, 1993.

  • [9]

    G. Gát. On (C, 1) summability of integrable functions with respect to the Walsh–Kaczmarz system. Studia Math., 130(2):135148, 1998.

    • Search Google Scholar
    • Export Citation
  • [10]

    G. Gát and U. Goginava. A weak type inequality for the maximal operator of (C, a)-means of Fourier series with respect to the Walsh–Kaczmarz system. Acta Math. Hungar,125(1–2):6583, 2009.

    • Search Google Scholar
    • Export Citation
  • [11]

    U. Goginava. The maximal operator of the Fejér means of the character system of the p-series field in the Kaczmarz rearrangement. Publ.Math.Debrecen,71(1–2):4355, 2007.

    • Search Google Scholar
    • Export Citation
  • [12]

    U. Goginava and K. Nagy. On the maximal operator of (C, a)-means of Walsh–Kaczmarz–Fourier series. Ukrainian Math. J., 62(2):175185, 2010.

    • Search Google Scholar
    • Export Citation
  • [13]

    N. Gogolashvili, K. Nagy and G. Tephnadze. Strong convergence theorem for Walsh–Kaczmarz-Fejér means. Mediterr. J. Math., 18(2):37, 2021.

    • Search Google Scholar
    • Export Citation
  • [14]

    D. Lukkassen, L.-E. Persson, G. Tephnadze and G. Tutberidze. Some inequalities related to strong convergence of Riesz logarithmic means of Vilenkin-Fourier series. J. Inequal. Appl., 2020.

    • Search Google Scholar
    • Export Citation
  • [15]

    I. Marcinkiewicz and A. Zygmund.On the summability of double Fourier series. Fund. Math.,32:112132, 1939.

  • [16]

    N. Memić, L. E. Persson and G. Tephnadze.A note on the maximal operators of Vilenkin–Nörlund means with non-increasing coefficients. Stud. Sci. Math. Hung.,53(4):545556, (2016).

    • Search Google Scholar
    • Export Citation
  • [17]

    K. Nagy and U. Goginava.Maximal operators of Walsh–Kaczmarz logarithmic means. Complex Var. Elliptic Equ.,58(9):11731182, 2013.

  • [18]

    C. N. Moore. Summable series and convergence factors. Dover Publications, Inc., New York 1966.

  • [19]

    F. Móricz and A. H. Siddiqi. Approximation by Nörlund means of Walsh–Fourier series. J. Approx. Theory,70(3):375389, 1992.

  • [20]

    K. Nagy. Approximation by Cesàro means of negative order of Walsh–Kaczmarz–Fourier series. East J. Approx,16(3):297311, 2010.

  • [21]

    K. Nagy. Approximation by Nörlund means of quadratical partial sums of double Walsh–Fourier series. Anal. Math,36(4):299319, 2010.

    • Search Google Scholar
    • Export Citation
  • [22]

    K. Nagy. Approximation by Nörlund means of double Walsh–Fourier series for Lipschitz functions. Math. Inequal. Appl.,15(2):301322, 2012.

    • Search Google Scholar
    • Export Citation
  • [23]

    K. Nagy and G. Tephnadze.Approximation by Walsh–Kaczmarz-Marcinkiewicz means on the Hardy space H2/3. Bulletin of TICMI,18(1):110121, 2014.

    • Search Google Scholar
    • Export Citation
  • [24]

    K. Nagy and G. Tephnadze. On the Walsh-Marcinkiewicz means on the Hardy space. Cent. Eur. J. Math., 12(8):12141228, 2014.

  • [25]

    K. Nagy and G. Tephnadze. Approximation by Walsh-Marcinkiewicz means on the Hardy space. Kyoto J. Math., 54(3):641652, 2014.

  • [26]

    K. Nagy and G. Tephnadze.Kaczmarz-Marcinkiewicz means and Hardy spaces. Acta math. Hung.,149(2):346374, 2016.

  • [27]

    K. Nagy and G. Tephnadze.Strong convergence theorem for Walsh-Marcinkiewicz means. Math. Inequal. Appl.,19(1):185195, 2016.

  • [28]

    L. E. Persson, G. Tephnadze and P. Wall. Maximal operators of Vilenkin–Nörlund means. J. Fourier Anal. Appl., 21(1):7694, 2015.

  • [29]

    L. E. Persson, G. Tephnadze and P. Wall.On the Nörlund logarithmic means with respect to Vilenkin system in the martingale Hardy space H1. Acta math. Hung.,154(2):289301, 2018.

    • Search Google Scholar
    • Export Citation
  • [30]

    L. E. Persson, G. Tephnadze and G. Tutberidze.On the boundedness of subsequences of Vilenkin-Fejér means on the martingale. Hardy spaces, operators and matrices,14(1):283294, 2020.

    • Search Google Scholar
    • Export Citation
  • [31]

    L. E. Persson, G. Tephnadze, G. Tutberidze and P. Wall. Strong summability result of Vilenkin-Fejér means on bounded Vilenkin groups. Ukr. Math. J.. (To appear.)

    • Search Google Scholar
    • Export Citation
  • [32]

    F. Schipp. Pointwise convergence of expansions with respect to certain product systems. Anal. Math,2(1):6576, 1976.

  • [33]

    F. Schipp, W. R. Wade, P. Simon and J. Pál. Walsh series. An introduction to dyadic harmonic analysis. With the collaboration of J. Pál. Adam Hilger, Ltd., Bristol, 1990.

    • Search Google Scholar
    • Export Citation
  • [34]

    P. Simon. On the Cesáro summability with respect to the Walsh–Kaczmarz system. J. Approx. Theory,106(2):249261, 2000.

  • [35]

    P. Simon. Cesáro summability with respect to two-parameter Walsh systems. Monatsh. Math,131(4):321334, 2000.

  • [36]

    V. A. Skvorcov. On Fourier series with respect to the Walsh–Kaczmarz system. Anal. Math,7(2):141150, 1981.

  • [37]

    A. Šne˘ıder. On series of Walsh functions with monotonic coefficients. Izvestiya Akad. Nauk SSSR. Ser. Mat. 12:179192, 1948. (In Russian.)

    • Search Google Scholar
    • Export Citation
  • [38]

    G. Tephnadze. On the maximal operators of Kaczmarz-Nörlund means. Acta Math. Acad. Paed. Nyíreg.,31:259271, 2015.

  • [39]

    G. Tephnadze. On the maximal operators of Walsh–Kaczmarz–Fejér means. Period. Math. Hungar.,67(1):3345, 2013.

  • [40]

    G. Tephnadze. Approximation by Walsh–Kaczmarz-Fejér means on the Hardy space. Acta Math., Sci. Ser. B Engl. Ed.,34(5):15931602, 2014.

    • Search Google Scholar
    • Export Citation
  • [41]

    G. Tephnadze. Fejér means of Vilenkin-Fourier series. Studia Sci. Math. Hungar.,49(1):7990, 2012.

  • [42]

    G. Tephnadze. The maximal operators of logarithmic means of one-dimensional Vilenkin-Fourier series. Acta Math. Acad. Paed-agog. Nyházi., (N.S.) 27(2):245256, 2011.

    • Search Google Scholar
    • Export Citation
  • [43]

    G. Tephnadze. On the maximal operators of Kaczmarz-Nörlund means. Acta Math. Acad. Paed. Nyíreg.,31:259271, 2015.

  • [44]

    G. Tephnadze and G. Tutberidze.A note on the maximal operators of the Nörlund logaritmic means of Vilenkin-Fourier series. Transactions of A. Razmadze Math. Inst.,174(1):1070112, 2020.

    • Search Google Scholar
    • Export Citation
  • [45]

    G. Tutberidze. Maximal operators of T means with respect to the Vilenkin system. Nonlinear Studies, 27(4):111, 2020.

  • [46]

    G. Tutberidze. Modulus of continuity and boundedness of subsequences of Vilenkin-Fejér means in the martingale Hardy spaces. Georgian Math. J.. (To appear.)

    • Search Google Scholar
    • Export Citation
  • [47]

    W. S. Young. On the a. e. convergence of Walsh–Kaczmarz–Fourier series.Proc. Amer. Math. Soc.,44:353358, 1974.

  • [48]

    F. Weisz. Martingale Hardy spaces and their applications in Fourier analysis. Lecture Notes in Mathematics, 1568, Springer-Verlag, Berlin, 1994.

    • Search Google Scholar
    • Export Citation
  • [49]

    F. Weisz. Summability of multidimensional Fourier series and Hardy spaces. Mathematics and its Applications, 541. Kluwer Academic Publishers, Dordrecht 2002.

    • Search Google Scholar
    • Export Citation
  • [50]

    F. Weisz. 8-summability of Fourier series. Acta Math. Hungar,103(1–2):139175, 2004.

  • [51]

    F. Weisz. 8-summation and Hardy spaces. J. Approx. Theory, 107:121142, 2000.

  • [52]

    F. Weisz. Several dimensional 8-summability and Hardy spaces. Math. Nachr.,230:159180, 2001.

  • [53]

    F. Weisz. Marcinkiewicz-8-summability of double Fourier series. Annales Univ. Sci. Budapest., Sect. Comp.,24:103118, 2004.

  • [54]

    F. Weisz. Marcinkiewicz-8-summability of Fourier transforms. Acta Math. Hungar,96(1–2):149160, 2002.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)