View More View Less
  • 1 The University of Georgia, School of science and technology, 77a Merab Kostava St, Tbilisi 0128, Georgia
  • | 2 Department of Computer Science and Computational Engineering, UiT - The Arctic University of Norway, P.O. Box 385, N-8505, Narvik, Norway
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper we prove and discuss some new (Hp, Lp,∞) type inequalities of the maximal operators of T means with monotone coefficients with respect to Walsh–Kaczmarz system. It is also proved that these results are the best possible in a special sense. As applications, both some well-known and new results are pointed out. In particular, we apply these results to prove a.e. convergence of such T means.

  • [1]

    L. Baramidze, L. E. Persson, G. Tephnadze and P. Wall. Srtong summability and Boundedness of Maximal operators of Vilenkin–Nörlund means with non-increasing coefficients/ J. Inequal. Appl., 2016.

    • Search Google Scholar
    • Export Citation
  • [2]

    I. Blahota, K. Nagy. Approximation by Θ-means of Walsh–Fourier series. Anal. Math., 44(1):5771, 2018.

  • [3]

    I. Blahota, K. Nagy and G. Tephnadze. Approximation by Mar-cinkiewicz Θ-means of double Walsh–Fourier series. Math. Inequal. Appl., 22(3):837853, 2019.

    • Search Google Scholar
    • Export Citation
  • [4]

    I. Blahota and G. Gát.Norm summability of Nörlund logarithmic means on unbounded Vilenkin groups. Anal. Theory Appl.,24(1):117, 2008.

    • Search Google Scholar
    • Export Citation
  • [5]

    I. Blahota and G. Tephnadze.On the (C, a)-means with respect to the Walsh system. Anal. Math., 40:161174, 2014.

  • [6]

    I. Blahota and G. Tephnadze.Strong convergence theorem for Vilenkin-Fejér means. Publ. Math. Debrecen,85(1–2):181196, 2014.

  • [7]

    I. Blahota, L. E. Persson and G. Tephnadze. On the Nörlund means of Vilenkin-Fourier series. Czechoslovak Math. J., 65(4):9831002, 2015.

    • Search Google Scholar
    • Export Citation
  • [8]

    G. Gát. Investigations of certain operators with respect to the Vilenkin system. Acta Math. Hungar,61(1–2):131149, 1993.

  • [9]

    G. Gát. On (C, 1) summability of integrable functions with respect to the Walsh–Kaczmarz system. Studia Math., 130(2):135148, 1998.

    • Search Google Scholar
    • Export Citation
  • [10]

    G. Gát and U. Goginava. A weak type inequality for the maximal operator of (C, a)-means of Fourier series with respect to the Walsh–Kaczmarz system. Acta Math. Hungar,125(1–2):6583, 2009.

    • Search Google Scholar
    • Export Citation
  • [11]

    U. Goginava. The maximal operator of the Fejér means of the character system of the p-series field in the Kaczmarz rearrangement. Publ.Math.Debrecen,71(1–2):4355, 2007.

    • Search Google Scholar
    • Export Citation
  • [12]

    U. Goginava and K. Nagy. On the maximal operator of (C, a)-means of Walsh–Kaczmarz–Fourier series. Ukrainian Math. J., 62(2):175185, 2010.

    • Search Google Scholar
    • Export Citation
  • [13]

    N. Gogolashvili, K. Nagy and G. Tephnadze. Strong convergence theorem for Walsh–Kaczmarz-Fejér means. Mediterr. J. Math., 18(2):37, 2021.

    • Search Google Scholar
    • Export Citation
  • [14]

    D. Lukkassen, L.-E. Persson, G. Tephnadze and G. Tutberidze. Some inequalities related to strong convergence of Riesz logarithmic means of Vilenkin-Fourier series. J. Inequal. Appl., 2020.

    • Search Google Scholar
    • Export Citation
  • [15]

    I. Marcinkiewicz and A. Zygmund.On the summability of double Fourier series. Fund. Math.,32:112132, 1939.

  • [16]

    N. Memić, L. E. Persson and G. Tephnadze.A note on the maximal operators of Vilenkin–Nörlund means with non-increasing coefficients. Stud. Sci. Math. Hung.,53(4):545556, (2016).

    • Search Google Scholar
    • Export Citation
  • [17]

    K. Nagy and U. Goginava.Maximal operators of Walsh–Kaczmarz logarithmic means. Complex Var. Elliptic Equ.,58(9):11731182, 2013.

  • [18]

    C. N. Moore. Summable series and convergence factors. Dover Publications, Inc., New York 1966.

  • [19]

    F. Móricz and A. H. Siddiqi. Approximation by Nörlund means of Walsh–Fourier series. J. Approx. Theory,70(3):375389, 1992.

  • [20]

    K. Nagy. Approximation by Cesàro means of negative order of Walsh–Kaczmarz–Fourier series. East J. Approx,16(3):297311, 2010.

  • [21]

    K. Nagy. Approximation by Nörlund means of quadratical partial sums of double Walsh–Fourier series. Anal. Math,36(4):299319, 2010.

    • Search Google Scholar
    • Export Citation
  • [22]

    K. Nagy. Approximation by Nörlund means of double Walsh–Fourier series for Lipschitz functions. Math. Inequal. Appl.,15(2):301322, 2012.

    • Search Google Scholar
    • Export Citation
  • [23]

    K. Nagy and G. Tephnadze.Approximation by Walsh–Kaczmarz-Marcinkiewicz means on the Hardy space H2/3. Bulletin of TICMI,18(1):110121, 2014.

    • Search Google Scholar
    • Export Citation
  • [24]

    K. Nagy and G. Tephnadze. On the Walsh-Marcinkiewicz means on the Hardy space. Cent. Eur. J. Math., 12(8):12141228, 2014.

  • [25]

    K. Nagy and G. Tephnadze. Approximation by Walsh-Marcinkiewicz means on the Hardy space. Kyoto J. Math., 54(3):641652, 2014.

  • [26]

    K. Nagy and G. Tephnadze.Kaczmarz-Marcinkiewicz means and Hardy spaces. Acta math. Hung.,149(2):346374, 2016.

  • [27]

    K. Nagy and G. Tephnadze.Strong convergence theorem for Walsh-Marcinkiewicz means. Math. Inequal. Appl.,19(1):185195, 2016.

  • [28]

    L. E. Persson, G. Tephnadze and P. Wall. Maximal operators of Vilenkin–Nörlund means. J. Fourier Anal. Appl., 21(1):7694, 2015.

  • [29]

    L. E. Persson, G. Tephnadze and P. Wall.On the Nörlund logarithmic means with respect to Vilenkin system in the martingale Hardy space H1. Acta math. Hung.,154(2):289301, 2018.

    • Search Google Scholar
    • Export Citation
  • [30]

    L. E. Persson, G. Tephnadze and G. Tutberidze.On the boundedness of subsequences of Vilenkin-Fejér means on the martingale. Hardy spaces, operators and matrices,14(1):283294, 2020.

    • Search Google Scholar
    • Export Citation
  • [31]

    L. E. Persson, G. Tephnadze, G. Tutberidze and P. Wall. Strong summability result of Vilenkin-Fejér means on bounded Vilenkin groups. Ukr. Math. J.. (To appear.)

    • Search Google Scholar
    • Export Citation
  • [32]

    F. Schipp. Pointwise convergence of expansions with respect to certain product systems. Anal. Math,2(1):6576, 1976.

  • [33]

    F. Schipp, W. R. Wade, P. Simon and J. Pál. Walsh series. An introduction to dyadic harmonic analysis. With the collaboration of J. Pál. Adam Hilger, Ltd., Bristol, 1990.

    • Search Google Scholar
    • Export Citation
  • [34]

    P. Simon. On the Cesáro summability with respect to the Walsh–Kaczmarz system. J. Approx. Theory,106(2):249261, 2000.

  • [35]

    P. Simon. Cesáro summability with respect to two-parameter Walsh systems. Monatsh. Math,131(4):321334, 2000.

  • [36]

    V. A. Skvorcov. On Fourier series with respect to the Walsh–Kaczmarz system. Anal. Math,7(2):141150, 1981.

  • [37]

    A. Šne˘ıder. On series of Walsh functions with monotonic coefficients. Izvestiya Akad. Nauk SSSR. Ser. Mat. 12:179192, 1948. (In Russian.)

    • Search Google Scholar
    • Export Citation
  • [38]

    G. Tephnadze. On the maximal operators of Kaczmarz-Nörlund means. Acta Math. Acad. Paed. Nyíreg.,31:259271, 2015.

  • [39]

    G. Tephnadze. On the maximal operators of Walsh–Kaczmarz–Fejér means. Period. Math. Hungar.,67(1):3345, 2013.

  • [40]

    G. Tephnadze. Approximation by Walsh–Kaczmarz-Fejér means on the Hardy space. Acta Math., Sci. Ser. B Engl. Ed.,34(5):15931602, 2014.

    • Search Google Scholar
    • Export Citation
  • [41]

    G. Tephnadze. Fejér means of Vilenkin-Fourier series. Studia Sci. Math. Hungar.,49(1):7990, 2012.

  • [42]

    G. Tephnadze. The maximal operators of logarithmic means of one-dimensional Vilenkin-Fourier series. Acta Math. Acad. Paed-agog. Nyházi., (N.S.) 27(2):245256, 2011.

    • Search Google Scholar
    • Export Citation
  • [43]

    G. Tephnadze. On the maximal operators of Kaczmarz-Nörlund means. Acta Math. Acad. Paed. Nyíreg.,31:259271, 2015.

  • [44]

    G. Tephnadze and G. Tutberidze.A note on the maximal operators of the Nörlund logaritmic means of Vilenkin-Fourier series. Transactions of A. Razmadze Math. Inst.,174(1):1070112, 2020.

    • Search Google Scholar
    • Export Citation
  • [45]

    G. Tutberidze. Maximal operators of T means with respect to the Vilenkin system. Nonlinear Studies, 27(4):111, 2020.

  • [46]

    G. Tutberidze. Modulus of continuity and boundedness of subsequences of Vilenkin-Fejér means in the martingale Hardy spaces. Georgian Math. J.. (To appear.)

    • Search Google Scholar
    • Export Citation
  • [47]

    W. S. Young. On the a. e. convergence of Walsh–Kaczmarz–Fourier series.Proc. Amer. Math. Soc.,44:353358, 1974.

  • [48]

    F. Weisz. Martingale Hardy spaces and their applications in Fourier analysis. Lecture Notes in Mathematics, 1568, Springer-Verlag, Berlin, 1994.

    • Search Google Scholar
    • Export Citation
  • [49]

    F. Weisz. Summability of multidimensional Fourier series and Hardy spaces. Mathematics and its Applications, 541. Kluwer Academic Publishers, Dordrecht 2002.

    • Search Google Scholar
    • Export Citation
  • [50]

    F. Weisz. 8-summability of Fourier series. Acta Math. Hungar,103(1–2):139175, 2004.

  • [51]

    F. Weisz. 8-summation and Hardy spaces. J. Approx. Theory, 107:121142, 2000.

  • [52]

    F. Weisz. Several dimensional 8-summability and Hardy spaces. Math. Nachr.,230:159180, 2001.

  • [53]

    F. Weisz. Marcinkiewicz-8-summability of double Fourier series. Annales Univ. Sci. Budapest., Sect. Comp.,24:103118, 2004.

  • [54]

    F. Weisz. Marcinkiewicz-8-summability of Fourier transforms. Acta Math. Hungar,96(1–2):149160, 2002.