The sticky polymatroid conjecture states that any two extensions of the polymatroid have an amalgam if and only if the polymatroid has no non-modular pairs of flats. We show that the conjecture holds for polymatroids on five or less elements.
A Bachem and W. Kern. On sticky matroids. Discrete Math, 69 11–18, 1988.
J. E. Bonin. A note on the sticky matroid conjecture, Ann. Comb., 15:619–624, 2011.
L. Csirmaz. Sticky matroids and convolution. 2019. Available at arXiv.org, arXiv:1909.02353.
R. Dougherty, C. Freiling and K. Zeger. Linear rank inequalities on five or more variables. 2009. Available at arXiv.org, arXiv:0910.0284
W. Hochstättler and M. Wilhelmi. Sticky matroids and Kantor’s conjecture. Algebra Univers., 80(12):1–21, 2019.
L. Lovász. Submodular functions and convexity. Mathematical Programming–The State of the Art (A. Bachem, M. Grötchel and B. Korte, eds.). Springer-Verlag, Berlin, 234–257, 1982
F. Matúš. Adhesivity of polymatroids,Discrete Mathematics, 307:2464–2477, 2007.
J. G. Oxley. Matroid Theory, Oxford Science Publications. The Calrendon Press, 1992. Oxford University Press, New York.
C. Padro. Lecture Notes in Secret Sharing, Cryptology ePrint Archive 2012/674, (2012).
S. Poljak and D. Turzik. A note on sticky matroids, Discrete Math, 42(1):119–123, 1982.
M. Terzer. Polco: A Java tool to compute extreme rays of polyhedral cones, 2009. Available at http://www.csb.ethz.ch/tools/polco
M. Studeny, R. R. Bouckaert and T. Kocka. Extreme supermodular set functions over five variables. Research Report no 1977, Institute of Information Theory and Automation, Prague, 2000.
R. W. Yeung. A first course in information theory, Kluwer Academic / Plenum Publishers, 2002.