View More View Less
  • 1 UTIA, Prague, and Rényi Institute of Mathematics, Budapest
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

The sticky polymatroid conjecture states that any two extensions of the polymatroid have an amalgam if and only if the polymatroid has no non-modular pairs of flats. We show that the conjecture holds for polymatroids on five or less elements.

  • [1]

    A Bachem and W. Kern. On sticky matroids. Discrete Math, 69 1118, 1988.

  • [2]

    J. E. Bonin. A note on the sticky matroid conjecture, Ann. Comb., 15:619624, 2011.

  • [3]

    L. Csirmaz. Sticky matroids and convolution. 2019. Available at, arXiv:1909.02353.

  • [4]

    R. Dougherty, C. Freiling and K. Zeger. Linear rank inequalities on five or more variables. 2009. Available at, arXiv:0910.0284

    • Search Google Scholar
    • Export Citation
  • [5]

    W. Hochstättler and M. Wilhelmi. Sticky matroids and Kantor’s conjecture. Algebra Univers., 80(12):121, 2019.

  • [6]

    L. Lovász. Submodular functions and convexity. Mathematical Programming–The State of the Art (A. Bachem, M. Grötchel and B. Korte, eds.). Springer-Verlag, Berlin, 234257, 1982

    • Search Google Scholar
    • Export Citation
  • [7]

    F. Matúš. Adhesivity of polymatroids,Discrete Mathematics, 307:24642477, 2007.

  • [8]

    J. G. Oxley. Matroid Theory, Oxford Science Publications. The Calrendon Press, 1992. Oxford University Press, New York.

  • [9]

    C. Padro. Lecture Notes in Secret Sharing, Cryptology ePrint Archive 2012/674, (2012).

  • [10]

    S. Poljak and D. Turzik. A note on sticky matroids, Discrete Math, 42(1):119123, 1982.

  • [11]

    M. Terzer. Polco: A Java tool to compute extreme rays of polyhedral cones, 2009. Available at

  • [12]

    M. Studeny, R. R. Bouckaert and T. Kocka. Extreme supermodular set functions over five variables. Research Report no 1977, Institute of Information Theory and Automation, Prague, 2000.

    • Search Google Scholar
    • Export Citation
  • [13]

    R. W. Yeung. A first course in information theory, Kluwer Academic / Plenum Publishers, 2002.