View More View Less
  • 1 School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Cross Mark

We study the effect on sections of a soluble-by-finite group G of finite rank of an almost fixed-point-free automorphism φ of G of finite order. We also elucidate the structure of G if φ has order 4 and if G is also (torsion-free)-by-finite. The latter extends recent work of Xu, Zhou and Liu.

  • [1]

    E. Bettio, E. Jabara and B. A. F. Wehrfritz. Groups admitting an automorphism of prime order with finite centralizer. Mediterr. J. Math., 11:112, 2014.

    • Search Google Scholar
    • Export Citation
  • [2]

    G. Endimioni. Polycyclic groups admitting an almost regular automorphism of prime order. J. Algebra, 323:31423146, 2010.

  • [3]

    L. Fuchs. Infinite Abelian Groups. Vol. 2. Academic Press, New York 1973.

  • [4]

    O. H. Kegel and B. A. F. Wehrfritz. Locally Finite Groups. North-Holland Pub. Co., Amsterdam 1973.

  • [5]

    L. G. Kovács. Groups with regular automorphisms of order four. Math. Z., 75 (1960/61), 277294.

  • [6]

    J. C. Lennox and D. J. S. Robinson. The Theory of Infinite Soluble Groups. Clarendon Press, Oxford 2004.

  • [7]

    B. Rickman. Groups which admit a fixed-point-free automorphism of order p2. J. Algebra, 57:77171, 1979.

  • [8]

    B. A. F. Wehrfritz. Infinite Linear Groups. Springer-Verlag, Berlin 1973.

  • [9]

    B. A. F. Wehrfritz. On the holomorphs of soluble groups of finite rank. J. Pure Appl. Algebra, 4:5569, 1974.

  • [10]

    B. A. F. Wehrfritz. Group and Ring Theoretic Properties of Polycyclic Groups. Springer, London 2009.

  • [11]

    B. A. F. Wehrfritz. Linear groups with all subgroups profinitely closed. Quart. J. Math., 62:501512, 2011.

  • [12]

    B. A. F. Wehrfritz. Almost fixed-point-free automorphisms of soluble groups. J. Pure Appl. Algebra, 215:11121115, 2011.

  • [13]

    B. A. F. Wehrfritz. Almost fixed-point-free automorphisms of order 2. Rend. Circ. Mat. Palermo, 60:365370, 2011.

  • [14]

    B. A. F. Wehrfritz. Almost fixed-point-free automorphisms of prime order. Cent. Eur. J. Math., 9:616626, 2011.

  • [15]

    B. A. F. Wehrfritz. On the fixed-point set and commutator subgroup of an automorphism of a group of finite rank. Rend. Sem. Mat. Univ. Padova, 127:249255, 2012.

    • Search Google Scholar
    • Export Citation
  • [16]

    B. A. F. Wehrfritz. On the fixed-point set of an automorphism of a group. Publ. Mat., 57:139153, 2013.

  • [17]

    B. A. F. Wehrfritz. Automorphisms of finite order of nilpotent groups. Ricerche mat., 63:261272, 2014.

  • [18]

    B. A. F. Wehrfritz. Automorphisms of finite order of nilpotent groups II. Studia Sci. Math. Hungarica, 51:547555, 2014.

  • [19]

    B. A. F. Wehrfritz. Automorphisms of finite order of nilpotent groups III. Real Acad. Cie. Series A Mat., 109:295301, 2015.

  • [20]

    Xu Tao, Zhou Fang and Liu Heguo. Polycyclic groups with automorphisms of order 4. Czech. Math. J., 66:575582, 2016.