We study the polynomial entropy of the logistic map depending on a parameter, and we calculate it for almost all values of the parameter. We show that polynomial entropy distinguishes systems with a low complexity (i.e. for which the topological entropy vanishes).
A. Artigue, D. Carrasco-Oliveira and I. Monteverde. Polynomial entropy and expansivity. Acta Mathematica Hungarica, 152:140–149, 2017.
P. Bernard and C. Labrousse. An entropic characterization on the fiat metric on the two torus. Geom. Dedicata, 180:187–201, 2016.
J. Blackhurst. Polynomials of the bifurcation points of logistic map. International journal of bifurcation and chaos, 21(7):1869–1877, 2011.
P. Collet and J. P. Eckmann. Iterated Maps on the Interval as Dynamical Systems. Birkhäuser, 1980.
P. Cvitanović and J. Myrheim. Complex universality. Communications in mathematical physics, 121(2):225–254 (1989).
R. Dilão and J. M. Amigó. Computing the topological entropy of unimodal maps. Interna-tional Journal of Bifurcation and Chaos 22(6):2012.
J. Guckenheimer, G. Oster and A. Ipaktchi. The Dynamics of Density Dependent Population Models. J. Math. Biology, 4:101–147, 1977.
L. Hauseux and F. Le Roux. Polynomial entropy of Brouwer homeomorphisms. arXiv:1712.01502v1, 2017.
J. Katić and M. Perić. On the polynomial entropy for Morse gradient systems. Mathematica Slovaca, 69(3):611–624, 2019.
A. Katok and B. Hasselblatt. Modern Theory of dynamical systems. Cambridge University Press, 1995.
I. S. Kotsieras and K. Karamanos. Exact computation of the bifurcation point B4 of the logistic map an the Baley-Broadhurst conjecture. International journal of bifurcation and chaos, 14(7):2417–2423, 2004.
C. Labrousse. Polynomial entropy for the circle homeomorphisms and for C1 nonvanishing vector fields on T2. arXiv:1311.0213, 2013.
C. Labrousse. Flat metric are strict local minimizers for the polynomial entropy. Regular and Chaotic dynamic, 17:479–491, 2012.
V. Latora, M. Baranger, A. Rapisarda and C. Tsallis. The rate of entropy increase at the edge of chaos. arXiv:cond-mat/9907412v4, 2000.
J. Li and X. Ye. Recent development of chaos theory in topological dynamics. arXiv:1503.06425v1, 2015.
V. Luo, W. Lai and L. Liv. A novel chaotic encryption algorithm based on improved baker map and logistic map. Multimedia tools and applications, 78:22023–22043, 2019.
J. P. Marco. Dynamical complexity and sympletic integrability. arXiv:0907.5363, 2009.
J. P. Marco. Polynomial entropies and integrable Hamiltonian systems. Regular and Chaotic Dynamic, 18(6):623–655, 2013.
R. May. Simple mathematical models with very complicated dynamics. Nature, 261, 1976.
W. de Melo and S. van Striem. One-Dimensional Dynamics. Springer-Verlag, 422–537, 1993.
R. Rak and E. Rak. Route to chaos in generalized logistic map. arXiv:150200248v1, 2015.
H. Kr. Sarmah and T.Kr. Baishya. Period doubling route in the periodic and the chaotic region of the logistic map. International Journal of applied mathematics Statistics sciences, 2:49–62, 2013.
D. Singer. Stable Orbits and Bifurcation of Maps of the Interval. Siam J. Appl. Math., 35 (2), 260–267, 1978.
V. Tarasova and V. Tarasov. Logistic map with memory from economic model. Chaos, Solitons & Fractals, 95:84–91, 2017.