Let D be a weighted oriented graph, whose underlying graph is G, and let I (D) be its edge ideal. If G has no 3-, 5-, or 7-cycles, or G is Kőnig, we characterize when I (D) is unmixed. If G has no 3- or 5-cycles, or G is Kőnig, we characterize when I (D) is Cohen–Macaulay. We prove that I (D) is unmixed if and only if I (D) is Cohen–Macaulay when G has girth greater than 7 or G is Kőnig and has no 4-cycles.
J. Bang-Jensen and G. Gutin . Digraphs. Theory, Algorithms and Applications. Springer Monographs in Mathematics, Springer, 2006.
I. D. Castrillón , R. Cruz and E. Reyes . On well-covered, vertex decomposable and Cohen–Macaulay graphs. Electron. J. Combin., 23(2):17 pages, Paper 39, 2016.
M. Estrada and R. H. Villarreal . Cohen-Macaulay bipartite graphs. Arch. Math., 68:124–128, 1997.
O. Favaron . Very well-covered graphs. Discrete Math., 42:177–187, 1982.
P. Gimenez , J. Martínez-Bernal , A. Simis , R. H. Villarreal and C. E. Vivares . Symbolic powers of monomial ideals and Cohen–Macaulay vertex-weighted digraphs. In G. M. Greuel , et al., Eds, Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics, 491–510. Springer, Cham, 2018.
I. Gitler and R. H. Villarreal . Graphs, Rings and Polyhedra. Aportaciones Mat. Textos, 35. Soc. Mat. Mexicana, México, 2011.
D. Grayson and M. Stillman . Macaulay 2, 1996. Available via anonymous ftp from math.uiuc.edu.
H. T. Há , K. N. Lin , S. Morey , E. Reyes and R. H. Villarreal . Edge ideals of oriented graphs. Internat. J. Algebra Comput., 29(3):535–559, 2019.
F. Harary . Graph Theory. Addison-Wesley, Reading, MA, 1972.
J. Herzog , Y. Takayama and N. Terai . On the radical of a monomial ideal. Arch. Math. (Basel), 85:397–408, 2005.
J. Martínez-Bernal , S. Morey , C. E. Vivares and R. H. Villarreal . Depth and regularity of monomial ideals via polarization and combinatorial optimization. Acta Math. Vietnam., 44(1):243–268, 2019.
H. Matsumura . Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, 1986.
S. Morey , E. Reyes and R. H. Villarreal . Cohen–Macaulay, Shellable and unmixed clutters with a perfect matching of K[ohungarumlaut]nig type. J. Pure Appl. Algebra, 212(7):1770–1786, 2008.
C. Paulsen and S. Sather-Wagsta . Edge ideals of weighted graphs. J. Algebra Appl., 12(5):1250223, 2013.
Y. Pitones , E. Reyes and J. Toledo . Monomial ideals of weighted oriented graphs. Electron. J. Combin., 26(3):18 pages, Paper 44, 2019.
B. Randerath and P. D. Vestergaard . On well-covered graphs of odd girth 7 or greater. Discuss. Math. Graph Theory, 22:159–172, 2002.
G. Ravindra . Well-covered graphs. J. Combinatorics Information Syst. Sci., 2(1):20–21, 1977.
R. H. Villarreal . Cohen–Macaulay graphs. Manuscripta Math., 66:277–293, 1990.
R. H. Villarreal . Unmixed bipartite graphs. Rev. Colombiana Mat., 41(2):393–395, 2007.
R. H. Villarreal . Monomial Algebras, Second Edition. Monographs and Research Notes in Mathematics, Chapman and Hall/CRC, 2015.
G. Zhu , L. Xu , H. Wang and Z. Tang . Projective dimensions and regularity of edge ideals of some weighted oriented graphs. Rocky Mountain J. Math., 49(4):1391–1406, 2019.
G. Zhu , L. Xu , H. Wang and J. Zhang . Regularity and projective dimension of powers of edge ideal of the disjoint union of some weighted oriented gap-free bipartite graphs. J. Algebra Appl., 19(12):2050233, 2020.