Authors:
Yuriko Pitones Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14–740, 07000 Mexico City, D.F

Search for other papers by Yuriko Pitones in
Current site
Google Scholar
PubMed
Close
,
Enrique Reyes Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14–740, 07000 Mexico City, D.F

Search for other papers by Enrique Reyes in
Current site
Google Scholar
PubMed
Close
, and
Rafael H. Villarreal Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14–740, 07000 Mexico City, D.F

Search for other papers by Rafael H. Villarreal in
Current site
Google Scholar
PubMed
Close
Restricted access

Let D be a weighted oriented graph, whose underlying graph is G, and let I (D) be its edge ideal. If G has no 3-, 5-, or 7-cycles, or G is Kőnig, we characterize when I (D) is unmixed. If G has no 3- or 5-cycles, or G is Kőnig, we characterize when I (D) is Cohen–Macaulay. We prove that I (D) is unmixed if and only if I (D) is Cohen–Macaulay when G has girth greater than 7 or G is Kőnig and has no 4-cycles.

  • [1]

    J. Bang-Jensen and G. Gutin . Digraphs. Theory, Algorithms and Applications. Springer Monographs in Mathematics, Springer, 2006.

  • [2]

    I. D. Castrillón , R. Cruz and E. Reyes . On well-covered, vertex decomposable and Cohen–Macaulay graphs. Electron. J. Combin., 23(2):17 pages, Paper 39, 2016.

    • Search Google Scholar
    • Export Citation
  • [3]

    M. Estrada and R. H. Villarreal . Cohen-Macaulay bipartite graphs. Arch. Math., 68:124128, 1997.

  • [4]

    O. Favaron . Very well-covered graphs. Discrete Math., 42:177187, 1982.

  • [5]

    P. Gimenez , J. Martínez-Bernal , A. Simis , R. H. Villarreal and C. E. Vivares . Symbolic powers of monomial ideals and Cohen–Macaulay vertex-weighted digraphs. In G. M. Greuel , et al., Eds, Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics, 491510. Springer, Cham, 2018.

    • Search Google Scholar
    • Export Citation
  • [6]

    I. Gitler and R. H. Villarreal . Graphs, Rings and Polyhedra. Aportaciones Mat. Textos, 35. Soc. Mat. Mexicana, México, 2011.

  • [7]

    D. Grayson and M. Stillman . Macaulay 2, 1996. Available via anonymous ftp from math.uiuc.edu.

  • [8]

    H. T. , K. N. Lin , S. Morey , E. Reyes and R. H. Villarreal . Edge ideals of oriented graphs. Internat. J. Algebra Comput., 29(3):535559, 2019.

    • Search Google Scholar
    • Export Citation
  • [9]

    F. Harary . Graph Theory. Addison-Wesley, Reading, MA, 1972.

  • [10]

    J. Herzog , Y. Takayama and N. Terai . On the radical of a monomial ideal. Arch. Math. (Basel), 85:397408, 2005.

  • [11]

    J. Martínez-Bernal , S. Morey , C. E. Vivares and R. H. Villarreal . Depth and regularity of monomial ideals via polarization and combinatorial optimization. Acta Math. Vietnam., 44(1):243268, 2019.

    • Search Google Scholar
    • Export Citation
  • [12]

    H. Matsumura . Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, 1986.

  • [13]

    S. Morey , E. Reyes and R. H. Villarreal . Cohen–Macaulay, Shellable and unmixed clutters with a perfect matching of K[ohungarumlaut]nig type. J. Pure Appl. Algebra, 212(7):17701786, 2008.

    • Search Google Scholar
    • Export Citation
  • [14]

    C. Paulsen and S. Sather-Wagsta . Edge ideals of weighted graphs. J. Algebra Appl., 12(5):1250223, 2013.

  • [15]

    Y. Pitones , E. Reyes and J. Toledo . Monomial ideals of weighted oriented graphs. Electron. J. Combin., 26(3):18 pages, Paper 44, 2019.

    • Search Google Scholar
    • Export Citation
  • [16]

    B. Randerath and P. D. Vestergaard . On well-covered graphs of odd girth 7 or greater. Discuss. Math. Graph Theory, 22:159172, 2002.

    • Search Google Scholar
    • Export Citation
  • [17]

    G. Ravindra . Well-covered graphs. J. Combinatorics Information Syst. Sci., 2(1):2021, 1977.

  • [18]

    R. H. Villarreal . Cohen–Macaulay graphs. Manuscripta Math., 66:277293, 1990.

  • [19]

    R. H. Villarreal . Unmixed bipartite graphs. Rev. Colombiana Mat., 41(2):393395, 2007.

  • [20]

    R. H. Villarreal . Monomial Algebras, Second Edition. Monographs and Research Notes in Mathematics, Chapman and Hall/CRC, 2015.

  • [21]

    G. Zhu , L. Xu , H. Wang and Z. Tang . Projective dimensions and regularity of edge ideals of some weighted oriented graphs. Rocky Mountain J. Math., 49(4):13911406, 2019.

    • Search Google Scholar
    • Export Citation
  • [22]

    G. Zhu , L. Xu , H. Wang and J. Zhang . Regularity and projective dimension of powers of edge ideal of the disjoint union of some weighted oriented gap-free bipartite graphs. J. Algebra Appl., 19(12):2050233, 2020.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)