Authors:
Takao Komatsu Department of Mathematical Sciences, School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China

Search for other papers by Takao Komatsu in
Current site
Google Scholar
PubMed
Close
,
José L. Ramírez Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá, Colombia

Search for other papers by José L. Ramírez in
Current site
Google Scholar
PubMed
Close
, and
Diego Villamizar Department of Mathematics, Tulane University, New Orleans, LA 70118
Department of Mathematics and Systems Analysis, Aalto Universuty, FI-00076, Aalto, Finland

Search for other papers by Diego Villamizar in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

In this paper, we investigate a generalization of the classical Stirling numbers of the first kind by considering permutations over tuples with an extra condition on the minimal elements of the cycles. The main focus of this work is the analysis of combinatorial properties of these new objects. We give general combinatorial identities and some recurrence relations. We also show some connections with other sequences such as poly-Cauchy numbers with higher level and central factorial numbers. To obtain our results, we use pure combinatorial arguments and classical manipulations of formal power series.

  • [1]

    M. Aigner . A Course in Enumeration. Graduate Texts in Mathematics 238, Springer, 2007.

  • [2]

    E. T. Bell . Lagrange and Wilson theorems for the generalized Stirling numbers. Proc. Ed-inburgh Math. Soc., 5:171173, 1938.

  • [3]

    B. Bényi . Advances in bijective combinatorics, PhD thesis, (2014). Available at http://www.math.u-szeged.hu/phd/dreposit/phdtheses/benyi-beata-d.pdf.

    • Search Google Scholar
    • Export Citation
  • [4]

    B. Bényi and P. Hajnal . Combinatorics of poly-Bernoulli numbers. Studia Sci. Math. Hun-garica, 52:537558, 2015.

  • [5]

    B. Bényi and P. Hajnal . Combinatorial properties of poly-Bernoulli relatives. Integers, 17(A31):126, 2017.

  • [6]

    B. Bényi and J. L. Ramírez . Some applications of S-restricted set partitions. Period. Math. Hungar., 78(1):110127, 2019.

  • [7]

    C. Brewbaker . A combinatorial interpretation of the poly-Bernoulli numbers and two Fermat analogues. Integers, 8(#A02):19, 2008.

  • [8]

    P. L. Butzer , M. Schmidt , E. L. Stark and L. Vogt . Central factorial numbers; their main properties and some applications. Numer. Funct. Anal. Optimiz., 10:419488, 1989.

    • Search Google Scholar
    • Export Citation
  • [9]

    J. Quaintance and H. W. Gould . Combinatorial Identities for Stirling Numbers. World Scientific Publishing, 2016.

  • [10]

    Y. Gelineau and J. Zeng . Combinatorial interpretations of the Jacobi-Stirling numbers, Electron. J. Combin., 17, Paper #R70 2010.

  • [11]

    M. Kaneko . Poly-Bernoulli numbers. J. Théor. Nombres Bordeaux, 9:221228, 1997.

  • [12]

    T. Komatsu . Poly-Cauchy numbers. Kyushu J. Math., 67:143153, 2013.

  • [13]

    T. Komatsu . Poly-Cauchy numbers with a ą parameter. Ramanujan J., 31:353371, 2013.

  • [14]

    T. Komatsu . Convolution identities of poly-Cauchy numbers with level 2. Rend. Sem. Mat. Univ. Padova, to appear.

  • [15]

    T. Komatsu and C. Pita-Ruiz . Poly-Cauchy numbers with level 2. Integral Transforms Spec. Func., 31:570585, 2020.

  • [16]

    T. Komatsu , J. L. Ramírez and D. Villamizar . A combinatorial approach to the generalized central factorial numbers. Mediterr. J. Math., accepted.

    • Search Google Scholar
    • Export Citation
  • [17]

    T. Mansour . Combinatorics of set partitions. CRC Press, 2012.

  • [18]

    T. Mansour and M. Schork . Commutations Relations, Normal Ordering, and Stirling numbers. CRC Press, 2015.

  • [19]

    I. Mező . Combinatorics and Number Theory of Counting Sequences. CRC Press, 2019.

  • [20]

    B. K. Miceli . m-Partition boards and poly-Stirling numbers. J. Integer Seq., 13 (Article 10.3.3) 2010.

  • [21]

    J. Riordan . Combinatorial Identities. John Wiley & Sons, Inc., 1968.

  • [22]

    N. J. A. Sloane . The On-Line Encyclopedia of Integer Sequences. Available at oeis.org. (2020).

  • [23]

    C. Tweedie . The Stirling numbers and polynomials. Proc. Edinburgh Math. Soc., 37:225, 1918.

  • [24]

    W. Zhang and T. Wang . Powerful numbers in (1k + 1)(2k + 1) ⋯ (nk + 1). J. Number Theory, 132:26302635, 2012.

  • Collapse
  • Expand

The LaTeX template package can be downloaded from HERE.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2021  
Web of Science  
Total Cites
WoS
589
Journal Impact Factor 0,739
Rank by Impact Factor Mathematics 229/332
Impact Factor
without
Journal Self Cites
0,710
5 Year
Impact Factor
0,654
Journal Citation Indicator 0,57
Rank by Journal Citation Indicator Mathematics 287/474
Scimago  
Scimago
H-index
26
Scimago
Journal Rank
0,265
Scimago Quartile Score Mathematics (miscellaneous) (Q3)
Scopus  
Scopus
Cite Score
1,3
Scopus
CIte Score Rank
General Mathematics 193/391 (Q2)
Scopus
SNIP
0,746

2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
submission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 708 EUR / 860 USD
Print + online subscription: 796 EUR / 970 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)