In this paper, we investigate a generalization of the classical Stirling numbers of the first kind by considering permutations over tuples with an extra condition on the minimal elements of the cycles. The main focus of this work is the analysis of combinatorial properties of these new objects. We give general combinatorial identities and some recurrence relations. We also show some connections with other sequences such as poly-Cauchy numbers with higher level and central factorial numbers. To obtain our results, we use pure combinatorial arguments and classical manipulations of formal power series.
M. Aigner . A Course in Enumeration. Graduate Texts in Mathematics 238, Springer, 2007.
E. T. Bell . Lagrange and Wilson theorems for the generalized Stirling numbers. Proc. Ed-inburgh Math. Soc., 5:171–173, 1938.
B. Bényi . Advances in bijective combinatorics, PhD thesis, (2014). Available at http://www.math.u-szeged.hu/phd/dreposit/phdtheses/benyi-beata-d.pdf.
B. Bényi and P. Hajnal . Combinatorics of poly-Bernoulli numbers. Studia Sci. Math. Hun-garica, 52:537–558, 2015.
B. Bényi and P. Hajnal . Combinatorial properties of poly-Bernoulli relatives. Integers, 17(A31):1–26, 2017.
B. Bényi and J. L. Ramírez . Some applications of S-restricted set partitions. Period. Math. Hungar., 78(1):110–127, 2019.
C. Brewbaker . A combinatorial interpretation of the poly-Bernoulli numbers and two Fermat analogues. Integers, 8(#A02):1–9, 2008.
P. L. Butzer , M. Schmidt , E. L. Stark and L. Vogt . Central factorial numbers; their main properties and some applications. Numer. Funct. Anal. Optimiz., 10:419–488, 1989.
J. Quaintance and H. W. Gould . Combinatorial Identities for Stirling Numbers. World Scientific Publishing, 2016.
Y. Gelineau and J. Zeng . Combinatorial interpretations of the Jacobi-Stirling numbers, Electron. J. Combin., 17, Paper #R70 2010.
M. Kaneko . Poly-Bernoulli numbers. J. Théor. Nombres Bordeaux, 9:221–228, 1997.
T. Komatsu . Poly-Cauchy numbers. Kyushu J. Math., 67:143–153, 2013.
T. Komatsu . Poly-Cauchy numbers with a ą parameter. Ramanujan J., 31:353–371, 2013.
T. Komatsu . Convolution identities of poly-Cauchy numbers with level 2. Rend. Sem. Mat. Univ. Padova, to appear.
T. Komatsu and C. Pita-Ruiz . Poly-Cauchy numbers with level 2. Integral Transforms Spec. Func., 31:570–585, 2020.
T. Komatsu , J. L. Ramírez and D. Villamizar . A combinatorial approach to the generalized central factorial numbers. Mediterr. J. Math., accepted.
T. Mansour . Combinatorics of set partitions. CRC Press, 2012.
T. Mansour and M. Schork . Commutations Relations, Normal Ordering, and Stirling numbers. CRC Press, 2015.
I. Mező . Combinatorics and Number Theory of Counting Sequences. CRC Press, 2019.
B. K. Miceli . m-Partition boards and poly-Stirling numbers. J. Integer Seq., 13 (Article 10.3.3) 2010.
J. Riordan . Combinatorial Identities. John Wiley & Sons, Inc., 1968.
N. J. A. Sloane . The On-Line Encyclopedia of Integer Sequences. Available at oeis.org. (2020).
C. Tweedie . The Stirling numbers and polynomials. Proc. Edinburgh Math. Soc., 37:2–25, 1918.
W. Zhang and T. Wang . Powerful numbers in (1k + 1)(2k + 1) ⋯ (nk + 1). J. Number Theory, 132:2630–2635, 2012.