Authors:
Yaning Wang School of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, Henan, P. R. China

Search for other papers by Yaning Wang in
Current site
Google Scholar
PubMed
Close
and
Wenjie Wang School of Mathematics, Zhengzhou University of Aeronautics, Zhengzhou 450046, Henan, P. R. China

Search for other papers by Wenjie Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

In this paper, we prove that the ∗-Ricci tensor of a real hypersurface in complex projective plane ℂP 2 or complex hyperbolic plane ℂH 2 is cyclic parallel if and only if the hypersurface is of type (A). We find some three-dimensional real hypersurfaces having non-vanishing and non-parallel ∗-Ricci tensors which are cyclic parallel.

  • [1]

    J. Berndt . Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math., 395:132141, 1989.

    • Search Google Scholar
    • Export Citation
  • [2]

    T. E. Cecil and P. J. Ryan . Geometry of Hypersurfaces, Springer Monographs in Mathematics, Springer, New York, 2015.

  • [3]

    T. Hamada . Real hypersurfaces of complex space forms in terms of Ricci ∗-tensor. Tokyo J. Math., 25:473483, 2002.

  • [4]

    T. Hamada and J. Inoguchi . Real hypersurfaces of complex space forms with symmetric Ricci ∗-tensor. Mem. Fac. Sci. Eng. Shimane Univ., 38:15, 2005.

    • Search Google Scholar
    • Export Citation
  • [5]

    T. Hamada and J. Inoguchi . Ruled real hypersurfaces of complex space forms. Kodai Math. J., 33:123134, 2010.

  • [6]

    T. A. Ivey and P. J. Ryan . The structure Jacobi operator for real hypersurfaces in ℂP2 and ℂH2 . Result. Math., 56:473488, 2009.

    • Search Google Scholar
    • Export Citation
  • [7]

    T. Ivey and P. J. Ryan . The ∗-Ricci tensor for hypersurfaces in MPn and MHn. Tokyo J. Math., 34:445471, 2011.

  • [8]

    G. Kaimakamis and K. Panagiotidou . The-Ricci tensor of real hypersurfaces in symmetric spaces of rank one or two. In Real and Complex Submanifolds, Springer Proceedings in Mathematics & Statistics, New York, 2014.

    • Search Google Scholar
    • Export Citation
  • [9]

    G. Kaimakamis and K. Panagiotidou . ∗-Ricci solitons of real hypersurfaces in nonflat complex space forms. J. Geom. Phys., 86:408413, 2014.

    • Search Google Scholar
    • Export Citation
  • [10]

    G. Kaimakamis and K. Panagiotidou . Parallel ∗-Ricci tensor of real hypersurfaces in ℂP2 and ℂH2 . Taiwanese J. Math., 18:19911998, 2014.

    • Search Google Scholar
    • Export Citation
  • [11]

    G. Kaimakamis and K. Panagiotidou . Conditions of parallelism of ⌧-Ricci tensor of three dimensional real hypersurfaces in nonflat complex space forms. Taiwanese J. Math., 21:305318, 2017.

    • Search Google Scholar
    • Export Citation
  • [12]

    G. Kaimakamis and K. Panagiotidou . On a new type of tensor on real hypersurfaces in nonflat complex space forms. Symmetry, 11:Art. No. 559, 2019.

    • Search Google Scholar
    • Export Citation
  • [13]

    U.-H. Ki and Y. J. Suh . On real hypersurfaces of a complex space form. Math. J. Okayama Univ., 32:207221, 1990.

  • [14]

    M. Kimura . Real hypersurfaces and complex submanifolds in complex projective space. Trans. Amer. Math. Soc., 296:137149, 1986.

  • [15]

    Y. Maeda . On real hypersurfaces of a complex projective space. J. Math. Soc. Japan, 28:529540, 1976.

  • [16]

    S. Montiel . Real hypersurfaces of a complex hyperbolic space. J. Math. Soc. Jpn., 35:515535, 1985.

  • [17]

    S. Montiel and A. Romero . On some real hypersurfaces of a complex hyperbolic space. Geom. Dedicata, 20:245261, 1986.

  • [18]

    R. Niebergall and P. J. Ryan . Real hypersurfaces in complex space forms. In Tight and Taut Submanifolds, Math. Sci. Res. Inst. Publ., Vol. 32, Cambridge Univ. Press, Cambridge, 233305, 1997.

    • Search Google Scholar
    • Export Citation
  • [19]

    M. Okumura . On some real hyersurfaces of a complex projective space. Trans. Amer. Math. Soc., 212:355364, 1975.

  • [20]

    K. Panagiotidou and P. J. Xenos . Real hypersurfaces in ℂP2 and ℂH2 whose structure Jacobi operator is Lie B-parallel. Note Mat., 32:8999, 2012.

    • Search Google Scholar
    • Export Citation
  • [21]

    K. Sekigawa . On some compact Einstein almost Kähler manifolds. J. Math. Soc. Japan, 39:677684, 1987.

  • [22]

    S. Tachibana . On almost-analytic vectors in almost Kählerian manifolds. Tohoku Math. J., 11:247265, 1959.

  • [23]

    R. Takagi . On homogeneous real hypersurfaces in a complex projective space. Osaka J. Math., 10:495506, 1973.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)