Authors:
Huaning Liu Research Center for Number Theory and Its Applications, School of Mathematics, Northwest University, Xi’an 710127, China

Search for other papers by Huaning Liu in
Current site
Google Scholar
PubMed
Close
and
Yinyin Yang Research Center for Number Theory and Its Applications, School of Mathematics, Northwest University, Xi’an 710127, China

Search for other papers by Yinyin Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

In cryptography one needs pseudorandom sequences whose short subsequences are also pseudorandom. To handle this problem, Dartyge, Gyarmati and Sárközy introduced weighted measures of pseudorandomness of binary sequences. In this paper we continue the research in this direction. We introduce weighted pseudorandom measure for multidimensional binary lattices and estimate weighted pseudorandom measure for truly random binary lattices. We also give lower bounds for weighted measures of even order and present an example by using the quadratic character of finite fields.

  • [1]

    N. Alon , Y. Kohayakawa , C. Mauduit , C. G. Moreira and V. Rödl . Measures of pseudorandomness for finite sequences: Minimal values. Combinatorics, Probability, and Computing, 15:129, 2006.

    • Search Google Scholar
    • Export Citation
  • [2]

    V. Anantharam . A technique to study the correlation measures of binary sequences. Discrete Mathematics, 308:62036209, 2008.

  • [3]

    J. Cassaigne , C. Mauduit and A. Sárközy . On finite pseudorandom binary sequencs VII: the measures of pseudorandomness. Acta Arithmetica, 103:97108, 2002.

    • Search Google Scholar
    • Export Citation
  • [4]

    T. W. Cusick , C. Ding and A. Renvall . Stream ciphers and number theory. North-Holland Mathematical Library, North-Holland Publishing Co.: Amsterdam, The Netherlands, 1998.

    • Search Google Scholar
    • Export Citation
  • [5]

    C. Dartyge , K. Gyarmati and A. Sárközy . On irregularities of ditribution of binary sequences relative to arithmetic progressions, I. (General results). Uniform Distribution The-ory, 12:5567, 2017.

    • Search Google Scholar
    • Export Citation
  • [6]

    C. Dartyge , K. Gyarmati and A. Sárközy . On irregularities of ditribution of binary sequences relative to arithmetic progressions, II. (General results). Uniform Distribution The-ory, 12:5567, 2017.

    • Search Google Scholar
    • Export Citation
  • [7]

    P. Z. Fan and M. Darnell . Sequence design for communications applications. New York: Wiley, 1996.

  • [8]

    S. W. Golomb and G. Gong . Signal design for good correlation: for wireless communications cryptography and radar applications. Cambridge University Press, Cambridge, U.K., 2005.

    • Search Google Scholar
    • Export Citation
  • [9]

    L. Goubin , C. Mauduit and A. Sárközy . Construction of large families of pseudorandom binary sequences. Journal of Number Theory, 106:5669, 2004.

    • Search Google Scholar
    • Export Citation
  • [10]

    K. Gyarmati and C. Mauduit . On the correlation of binary sequences, II. Discrete Mathem-atics, 312:811818, 2012.

  • [11]

    K. Gyarmati , C. Mauduit and A. Sárközy . Measures of pseudorandomness of binary lattices, III (Qk, correlation, normality, minimal values). Uniform Distribution Theory, 5:183207, 2010.

    • Search Google Scholar
    • Export Citation
  • [12]

    K. Gyarmati , C. Mauduit and A. Sárközy . Measures of pseudorandomness of families of binary lattices, I (Definitions, a construction using quadratic characters). Publicationes Mathematicae Debrecen, 79:445460, 2011.

    • Search Google Scholar
    • Export Citation
  • [13]

    K. Gyarmati , C. Mauduit and A. Sárközy . Measures of pseudorandomness of families of binary lattices, II (A further construction). Publicationes Mathematicae Debrecen, 80:479502, 2012.

    • Search Google Scholar
    • Export Citation
  • [14]

    K. Gyarmati , C. Mauduit and A. Sárközy . On finite pseudorandom binary lattices. Discrete Applied Mathematics, 216:589597, 2017.

  • [15]

    K. Gyarmati , A. Sárközy and C. L. Stewart . On Legendre symbol lattices. Uniform Distribution Theory, 4:8195, 2009.

  • [16]

    K. Gyarmati , A. Sárközy and C. L. Stewart . On Legendre symbol lattices, II. Uniform Distribution Theory, 8:4765, 2013.

  • [17]

    P. Hubert , C. Mauduit and A. Sárközy . On pseudorandom binary lattices. Acta Arithmetica, 125:5162, 2006.

  • [18]

    H. Liu . A family of elliptic curve pseudorandom binary sequences. Designs, Codes and Cryptography, 73:251265, 2014.

  • [19]

    H. Liu . Large families of pseudorandom binary lattices by using the multiplicative inverse modulo p. International Journal of Number Theory, 15:527546, 2019.

    • Search Google Scholar
    • Export Citation
  • [20]

    C. Mauduit , J. Rivat and A. Sárközy . Construction of pseudorandom binary sequences using additive characters. Monatshefte für Mathematik, 141:197208, 2004.

    • Search Google Scholar
    • Export Citation
  • [21]

    C. Mauduit and A. Sárközy . On finite pseudorandom binary sequencs I: measure of pseu-dorandomness, the Legendre symbol. Acta Arithmetica, 82:365377, 1997.

    • Search Google Scholar
    • Export Citation
  • [22]

    C. Mauduit and A. Sárközy . Construction of pseudorandom binary sequences by using the multiplicative inverse. Acta Mathematica Hungarica, 108:239252, 2005.

    • Search Google Scholar
    • Export Citation
  • [23]

    C. Mauduit and A. Sárközy . On large families of pseudorandom binary lattices. Uniform Distribution Theory, 2:2337, 2007.

  • [24]

    C. Mauduit and A. Sárközy . Construction of pseudorandom binary lattices by using the multiplicative inverse. Monatshefte für Mathematik, 153:217231, 2008.

    • Search Google Scholar
    • Export Citation
  • [25]

    L. Mérai . Construction of pseudorandom binary lattices based on multiplicative characters. Periodica Mathematica Hungarica, 59:4351, 2009.

    • Search Google Scholar
    • Export Citation
  • [26]

    L. Mérai . Remarks on pseudorandom binary sequences over elliptic curves. Fundamenta Informaticae, 114:301308, 2012.

  • [27]

    L. Mérai . Construction of pseudorandom binary sequences over elliptic curves using multiplicative characters. Publicationes Mathematicae Debrecen, 80:199213, 2012.

    • Search Google Scholar
    • Export Citation
  • [28]

    J. Rivat and A. Sárközy . Modular constructions of pseudorandom binary sequences with composite moduli. Periodica Mathematica Hungarica, 51:75107, 2005.

    • Search Google Scholar
    • Export Citation
  • [29]

    A. Winterhof . Some estimates for character sums and applications. Designs, Codes and Cryptography, 22:123131, 2001.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.305
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)