Authors:
Saifallah Ghobber Department of Mathematics and Statistics, College of Science, King Faisal University, PO.Box: 400 AlAhsa 31982, Saudi Arabia

Search for other papers by Saifallah Ghobber in
Current site
Google Scholar
PubMed
Close
,
Siwar Hkimi Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie

Search for other papers by Siwar Hkimi in
Current site
Google Scholar
PubMed
Close
, and
Slim Omri Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie

Search for other papers by Slim Omri in
Current site
Google Scholar
PubMed
Close
Restricted access

The aim of this paper is to prove some uncertainty inequalities for the continuous Hankel wavelet transform, and study the localization operator associated to this transformation.

  • [1]

    C. Baccar . Uncertainty principles for the continuous Hankel wavelet transform. Integral Transforms Spec. Funct., 27:413429, 2016.

  • [2]

    I. Daubechies . The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory, 36:9611005, 1990.

    • Search Google Scholar
    • Export Citation
  • [3]

    D. L. Donoho , and P. B. Stark . Uncertainty principles and signal recovery. SIAM J. Appl. Math., 49:906931, 1989.

  • [4]

    W. G. Faris . Inequalities and uncertainty inequalities. J. Math. Phys., 19:461466, 1978.

  • [5]

    S. Ghobber . Localization measures in the time-scale setting. J. Pseudo-Differ. Oper. Appl, 8:389410, 2017.

  • [6]

    S. Ghobber and S. Omri . Time-frequency concentration of the windowed Hankel transform. Integral Transforms Spec. Funct., 25:481496, 2014.

    • Search Google Scholar
    • Export Citation
  • [7]

    S. Ghobber , S. Hkimi and S. Omri . Spectrograms and time-frequency localized functions in the Hankel setting. Oper. Matrices, 13:507527, 2019.

    • Search Google Scholar
    • Export Citation
  • [8]

    N. B. Hamadi and S. Omri . Uncertainty principles for the continuous wavelet transform in the Hankel setting. Appl. Anal., 97:513527, 2018.

    • Search Google Scholar
    • Export Citation
  • [9]

    H. Hankel . Die Fourier’schen Reihen und Integrale für Cylinderfunctionen. Math. Ann., 8, 1875.

  • [10]

    I. I. Hirschman . Variation diminishing Hankel transforms. J. Anal. Math., 8:307336, 1960.

  • [11]

    C. S. Herz . On the mean inversion of Fourier and Hankel transforms. Proc. Natl. Acad. Sci. USA, 40:996999, 1954.

  • [12]

    P. Lizhong and M. Ruiqin . Wavelets associated with Hankel transform and their Weyl transforms. Sci. China. Ser. A, 47:393400, 2004.

    • Search Google Scholar
    • Export Citation
  • [13]

    Y. Meyer . Wavelets and Operators, 1. Cambridge University Press (1993).

  • [14]

    R. S. Pathak and M. M. Dixit . Continuous and discrete Bessel wavelet transforms. J. Com-put. Appl. Math, 160:241250, 2003.

  • [15]

    A. L. Schwartz . An inversion theorem for Hankel transforms. Proc. Amer. Math. Soc., 22:713717, 1969.

  • [16]

    K. Trimèche . Generalized wavelets and hypergroups, (1997). CRC Press.

  • [17]

    G. A. M. Velasco and M. Dörfler . Sampling time-frequency localized functions and constructing localized time-frequency frames. Eur. J. Appl. Math., 28:854876, 2017.

    • Search Google Scholar
    • Export Citation
  • [18]

    E. Wilczok . New Uncertainty Principles for the Continuous Gabor Transform and the Continuous Wavelet Transform. Doc. Math., 5:201226, 2000.

    • Search Google Scholar
    • Export Citation
  • [19]

    M. W. Wong . Wavelet transforms and localization operators, 136. Springer Science & Business Media (2002).

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.305
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)