The aim of this paper is to prove some uncertainty inequalities for the continuous Hankel wavelet transform, and study the localization operator associated to this transformation.
C. Baccar . Uncertainty principles for the continuous Hankel wavelet transform. Integral Transforms Spec. Funct., 27:413–429, 2016.
I. Daubechies . The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory, 36:961–1005, 1990.
D. L. Donoho , and P. B. Stark . Uncertainty principles and signal recovery. SIAM J. Appl. Math., 49:906–931, 1989.
W. G. Faris . Inequalities and uncertainty inequalities. J. Math. Phys., 19:461–466, 1978.
S. Ghobber . Localization measures in the time-scale setting. J. Pseudo-Differ. Oper. Appl, 8:389–410, 2017.
S. Ghobber and S. Omri . Time-frequency concentration of the windowed Hankel transform. Integral Transforms Spec. Funct., 25:481–496, 2014.
S. Ghobber , S. Hkimi and S. Omri . Spectrograms and time-frequency localized functions in the Hankel setting. Oper. Matrices, 13:507–527, 2019.
N. B. Hamadi and S. Omri . Uncertainty principles for the continuous wavelet transform in the Hankel setting. Appl. Anal., 97:513–527, 2018.
H. Hankel . Die Fourier’schen Reihen und Integrale für Cylinderfunctionen. Math. Ann., 8, 1875.
I. I. Hirschman . Variation diminishing Hankel transforms. J. Anal. Math., 8:307–336, 1960.
C. S. Herz . On the mean inversion of Fourier and Hankel transforms. Proc. Natl. Acad. Sci. USA, 40:996–999, 1954.
P. Lizhong and M. Ruiqin . Wavelets associated with Hankel transform and their Weyl transforms. Sci. China. Ser. A, 47:393–400, 2004.
Y. Meyer . Wavelets and Operators, 1. Cambridge University Press (1993).
R. S. Pathak and M. M. Dixit . Continuous and discrete Bessel wavelet transforms. J. Com-put. Appl. Math, 160:241–250, 2003.
A. L. Schwartz . An inversion theorem for Hankel transforms. Proc. Amer. Math. Soc., 22:713–717, 1969.
K. Trimèche . Generalized wavelets and hypergroups, (1997). CRC Press.
G. A. M. Velasco and M. Dörfler . Sampling time-frequency localized functions and constructing localized time-frequency frames. Eur. J. Appl. Math., 28:854–876, 2017.
E. Wilczok . New Uncertainty Principles for the Continuous Gabor Transform and the Continuous Wavelet Transform. Doc. Math., 5:201–226, 2000.
M. W. Wong . Wavelet transforms and localization operators, 136. Springer Science & Business Media (2002).