Let K = ℚ(α) be a number field generated by a complex root a of a monic irreducible polynomial ƒ (x) = x36 − m, with m ≠ ±1 a square free rational integer. In this paper, we prove that if m ≡ 2 or 3 (mod 4) and m ≠ ±1 (mod 9) then the number field K is monogenic. If m ≡ 1 (mod 4) or m ≡±1 (mod 9), then the number field K is not monogenic.
S. Ahmad , T. Nakahara and S.M. Husnine . Power integral bases for certain pure sextic fields. Int. J. of Number Theory, 10(8):2257–2265, 2014.
S. Ahmad , T. Nakahara and A. Hameed . On certain pure sextic fields related to a problem of Hasse. Int. J. Alg. and Comput., 26(3):577–583, 2016.
Y. Bilu , I. Gaál and K. Győry . Index form equations in sextic fields: a hard computation. Acta Arithmetica, 115(1):85–96, 2004.
L. El Fadil . Computation of a power integral basis of a pure cubic number field. Int. J. Con-temp. Math. Sci., 2(13-16):601–606, 2007.
L. El Fadil . On Power integral bases for certain pure sextic fields. To appear in a forthcom-ing issue of Bol. Soc. Paran. Math. DOI: .
L. El Fadil . On Power integral bases for certain pure number fields. To appear in a forthcoming issue of Publicationes Mathematicae.
L. El Fadil . On Power integral bases for certain pure number fields defined by x24 −m. Stud. Sci. Math. Hung., 57(3):397–407, 2020.
L. El Fadil . On Power integral bases for certain pure number fields defined by x18 − m. To appear in a forthcoming issue of Comm. Math. Univ. Carolina.
L. El Fadil . On Newton polygon’s techniques and factorization of polynomial over henselian valued fields. J. of Algebra and its Appl., 19(10):2050188, 2020.
L. El Fadil , J. Montes and E. Nart . Newton polygons and pintegral bases of quartic number fields. J. Algebra and Appl., 11(4):1250073, 2012.
T. Funakura . On integral bases of pure quartic fields. Math. J. Okayama Univ., 26:27–41, 1984.
I. Gaál . Power integral bases in algebraic number fields. Ann. Univ. Sci. Budapest. Sect. Comp., 18:61–87, 1999.
I. Gaál , P. Olajos and M. Pohst . Power integral bases in orders of composite fields. Exp. Math., 11(1):87–90, 2002.
I. Gaál . Diophantine equations and power integral bases. Theory and algorithm. Second edition. Boston, Birkhäuser, 2019.
I. Gaál and L. Remete . Binomial Thue equations and power integral bases in pure quartic fields. JP Journal of Algebra Number Theory Appl., 32(1):49–61, 2014.
I. Gaál and L. Remete . Power integral bases and monogenity of pure fields. J. of Number Theory, 173:129–146, 2017.
A. Hameed and T. Nakahara . Integral bases and relative monogenity of pure octic fields. Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., 58(106)(4):419–433, 2015.
A. Hameed , T. Nakahara and S.M. Husnine . On existence of canonical number system in certain classes of pure algebraic number fields. J. Prime Res. Math., 7:19–24, 2011.
K. Hensel . Theorie der algebraischen Zahlen. Teubner Verlag, Leipzig Berlin, 1908.
O. Ore . Newtonsche Polygone in der Theorie der algebraischen Korper. Math. Ann., 99:84–117, 1928.
A. Pethő and M. Pohst . On the indices of multiquadratic number fields. Acta Arith., 153(4):393–414, 2012.