Author:
Lhoussain El Fadil Faculty of Sciences Dhar El Mahraz, P.O. Box 1796 Atlas-Fes , Sidi Mohamed ben Abdellah University, Morocco

Search for other papers by Lhoussain El Fadil in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

Let K = ℚ(α) be a number field generated by a complex root a of a monic irreducible polynomial ƒ (x) = x36 − m, with m ≠ ±1 a square free rational integer. In this paper, we prove that if m ≡ 2 or 3 (mod 4) and m ≠ ±1 (mod 9) then the number field K is monogenic. If m ≡ 1 (mod 4) or m ≡±1 (mod 9), then the number field K is not monogenic.

  • [1]

    S. Ahmad , T. Nakahara and S.M. Husnine . Power integral bases for certain pure sextic fields. Int. J. of Number Theory, 10(8):22572265, 2014.

    • Search Google Scholar
    • Export Citation
  • [2]

    S. Ahmad , T. Nakahara and A. Hameed . On certain pure sextic fields related to a problem of Hasse. Int. J. Alg. and Comput., 26(3):577583, 2016.

    • Search Google Scholar
    • Export Citation
  • [3]

    Y. Bilu , I. Gaál and K. Győry . Index form equations in sextic fields: a hard computation. Acta Arithmetica, 115(1):8596, 2004.

  • [4]

    L. El Fadil . Computation of a power integral basis of a pure cubic number field. Int. J. Con-temp. Math. Sci., 2(13-16):601606, 2007.

    • Search Google Scholar
    • Export Citation
  • [5]

    L. El Fadil . On Power integral bases for certain pure sextic fields. To appear in a forthcom-ing issue of Bol. Soc. Paran. Math. DOI: .

  • [6]

    L. El Fadil . On Power integral bases for certain pure number fields. To appear in a forthcoming issue of Publicationes Mathematicae.

  • [7]

    L. El Fadil . On Power integral bases for certain pure number fields defined by x24 −m. Stud. Sci. Math. Hung., 57(3):397407, 2020.

    • Search Google Scholar
    • Export Citation
  • [8]

    L. El Fadil . On Power integral bases for certain pure number fields defined by x18 − m. To appear in a forthcoming issue of Comm. Math. Univ. Carolina.

    • Search Google Scholar
    • Export Citation
  • [9]

    L. El Fadil . On Newton polygon’s techniques and factorization of polynomial over henselian valued fields. J. of Algebra and its Appl., 19(10):2050188, 2020.

    • Search Google Scholar
    • Export Citation
  • [10]

    L. El Fadil , J. Montes and E. Nart . Newton polygons and pintegral bases of quartic number fields. J. Algebra and Appl., 11(4):1250073, 2012.

    • Search Google Scholar
    • Export Citation
  • [11]

    T. Funakura . On integral bases of pure quartic fields. Math. J. Okayama Univ., 26:2741, 1984.

  • [12]

    I. Gaál . Power integral bases in algebraic number fields. Ann. Univ. Sci. Budapest. Sect. Comp., 18:6187, 1999.

  • [13]

    I. Gaál , P. Olajos and M. Pohst . Power integral bases in orders of composite fields. Exp. Math., 11(1):8790, 2002.

  • [14]

    I. Gaál . Diophantine equations and power integral bases. Theory and algorithm. Second edition. Boston, Birkhäuser, 2019.

  • [15]

    I. Gaál and L. Remete . Binomial Thue equations and power integral bases in pure quartic fields. JP Journal of Algebra Number Theory Appl., 32(1):4961, 2014.

    • Search Google Scholar
    • Export Citation
  • [16]

    I. Gaál and L. Remete . Power integral bases and monogenity of pure fields. J. of Number Theory, 173:129146, 2017.

  • [17]

    A. Hameed and T. Nakahara . Integral bases and relative monogenity of pure octic fields. Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., 58(106)(4):419433, 2015.

    • Search Google Scholar
    • Export Citation
  • [18]

    A. Hameed , T. Nakahara and S.M. Husnine . On existence of canonical number system in certain classes of pure algebraic number fields. J. Prime Res. Math., 7:1924, 2011.

    • Search Google Scholar
    • Export Citation
  • [19]

    H. Hasse . Zahlentheorie. Akademie-Verlag, Berlin, 1963.

  • [20]

    K. Hensel . Theorie der algebraischen Zahlen. Teubner Verlag, Leipzig Berlin, 1908.

  • [21]

    O. Ore . Newtonsche Polygone in der Theorie der algebraischen Korper. Math. Ann., 99:84117, 1928.

  • [22]

    A. Pethő and M. Pohst . On the indices of multiquadratic number fields. Acta Arith., 153(4):393414, 2012.

  • Collapse
  • Expand

The LaTeX template package can be downloaded from HERE.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2021  
Web of Science  
Total Cites
WoS
589
Journal Impact Factor 0,739
Rank by Impact Factor Mathematics 229/332
Impact Factor
without
Journal Self Cites
0,710
5 Year
Impact Factor
0,654
Journal Citation Indicator 0,57
Rank by Journal Citation Indicator Mathematics 287/474
Scimago  
Scimago
H-index
26
Scimago
Journal Rank
0,265
Scimago Quartile Score Mathematics (miscellaneous) (Q3)
Scopus  
Scopus
Cite Score
1,3
Scopus
CIte Score Rank
General Mathematics 193/391 (Q2)
Scopus
SNIP
0,746

2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
submission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 708 EUR / 860 USD
Print + online subscription: 796 EUR / 970 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)