We provide necessary and sufficient conditions for the coincidence, up to equivalence of the norms, between strong and weak Orlicz spaces. Roughly speaking, this coincidence holds true only for the so-called exponential spaces.
We also find the exact value of the embedding constant which appears in the corresponding norm inequality.
I. Ahmed , A. Fiorenza , M. R. Formica , A. Gogatishvili and J.M. Rakotoson . Some new results related to Lorentz GΓ-spaces and interpolation. J. Math. Anal. Appl., 483(2):24 pp., 2020.
I. Ahmed , A. Fiorenza and A. Hafeez . Some Interpolation Formulae for Grand and Small Lorentz Spaces. Mediterr. J. Math., 17(2):Art. 57, 21 pp., 2020.
G. Anatriello and M.R. Formica . Weighted fully measurable grand Lebesgue spaces and the maximal theorem. Ric. Mat., 65(1):221–233, 2016.
G. Anatriello , M. R. Formica and R. Giova . Fully measurable small Lebesgue spaces. J. Math. Anal. Appl., 447(1):550–563, 2017.
T. Andô , On products of Orlicz spaces. Math. Ann., 140:174–186, 1960.
C. Bennett and R. Sharpley . Interpolation of Operators. Academic Press, New York, 1988.
C. Capone and M. R. Formica . A decomposition of the dual space of some Banach function spaces. J. Funct. Spaces Appl. 2012, Art. ID 737534, 10 pp.
C. Capone , M. R. Formica and R. Giova . Grand Lebesgue spaces with respect to measurable functions. Nonlinear Anal., 85:125–131, 2013.
M. J. Carro , J. Raposo and J. Soria . Recent developments in the theory of Lorentz spaces and weighted inequalities. Mem. Amer. Math. Soc., 187(877):xii+128, 2007.
A. Cianchi . Strong and weak type inequalities for some classical operators in Orlicz spaces. J. London Math. Soc.(2), 60(1):187–202, 1999.
M. Cwikel , A. Kaminska , L. Maligranda and L. Pick . Are generalized Lorentz “spaces” really spaces?. Proc. Amer. Math. Soc., 132(12):3615–3625, 2004.
D. Cruz-Uribe and M. Krbec . Localization and extrapolation in Orlicz-Lorentz spaces. Function spaces, interpolation theory and related topics (Lund, 2000), 273–283, de Gruyter, Berlin, 2002.
D.E. Edmunds and W.D. Evans . Hardy operators, function spaces and embeddings. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2004.
D. E. Edmunds and M. Krbec . On decomposition in exponential Orlicz spaces. Math. Nachr., 213:77–88, 2000.
F. Farroni , A. Fiorenza and R. Giova . A sharp blow-up estimate for the Lebesgue norm. Rev. Mat. Complut., 32(3):745–766, 2019.
A. Fiorenza . Duality and reflexivity in grand Lebesgue spaces. Collect. Math., 51(2):131–148, 2000.
A. Fiorenza , M. R. Formica , A. Gogatishvili , T. Kopaliani and J.M. Rakotoson . Characterization of interpolation between grand, small or classical Lebesgue spaces. Nonlinear Anal., 177:422–453, 2018.
A. Fiorenza , M. R. Formica , T. Roskovec and F. Soudsky . Gagliardo–Nirenberg inequality for rearrangement-invariant Banach function spaces. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 30(4):847–864, 2019.
M. R. Formica , Y. V. Kozachenko , E. Ostrovsky and L. Sirota . Exponential Tail Estimates in the Law of Ordinary Logarithm (LOL) for Triangular Arrays of Random Variables. Lith. Math. J., 60(3):330–358, 2020.
A. T. Gürkanli . Inclusions and the approximate identities of the generalized grand Le-besgue spaces. Turkish J. Math., 42(6):3195–3203, 2018.
B. Iaffei . Comparison of two weak versions of the Orlicz spaces. Rev. Un. Mat. Argentina, 40(1-2):191–202, 1996.
P. Jain , A. Molchanova , M. Singh and S. Vodopyanov . On grand Sobolev spaces and point-wise description of Banach function spaces. Nonlinear Anal., 202:112100, 17 pp., 2021.
P. Jain , M. Singh and A.P. Singh . Recent trends in grand Lebesgue spaces. In Function Spaces and Inequalities, volume 206 of Springer Proceedings in Mathematics & Statistics, pages 137–159. Springer, 2017.
P. Jain , A. P. Singh , M. Singh and V.D. Stepanov . Sawyer’s duality principle for grand Lebesgue spaces. Math. Nachr., 292(4):841–849, 2019.
Y. Jiao , L. Wu and L. Peng . Weak Orlicz-Hardy martingale spaces. Internat. J. Math., 26(8):1550062, 26 pp., 2015.
R. Kawasumi and E. Nakai . Pointwise multipliers on weak Orlicz spaces. Hiroshima Math. J., 50(2):169–184, 2020.
Yu. V. Kozachenko and E. I. Ostrovsky . Banach Spaces of random variables of sub-Gaussian type. Teor. Veroyatn. Mat. Stat., Kiev„ 32(134):42–53, 1985. (In Russian. English translation: Theory Probab. Math. Stat., 32:45–56, 1986.)
Yu. V. Kozachenko , E. I. Ostrovsky and L. Sirota . Relations between exponential tails, moments and moment generating functions for random variables and vectors. arXiv:1701.01901v1 [math.FA] 8 Jan 2017.
Yu. V . Kozachenko and M. Sergiienko. Estimates of distributions for some functionals of stochastic processes from an Orlicz space. Random Oper. Stoch. Equ., 22(2):65–72, 2014.
M. A. Krasnosel’ski˘i and Ja. B. Ruticki˘i . Convex Functions and Orlicz Spaces. P. Noordhoff Ltd, Groningen, 1961.
K. Leśnik and J. Tomaszewski . Pointwise multipliers of Orlicz function spaces and factor-ization. Positivity, 21(4):1563–1573, 2017.
E. H. Lieb and M. Loss . Analysis. Second edition. American Mathematical Society, Providence, RI 2001.
N. Liu and Y. Ye . Weak Orlicz space and its convergence theorems. Acta Math. Sci. Ser. B, 30(5):1492–1500, 2010.
P. Liu , Y. Hou and M. Wang . Weak Orlicz space and its applications to the martingale theory. Sci. China Math., 53(4):905–916, 2010.
P. Liu and M. Wang . Weak Orlicz spaces: some basic properties and their applications to harmonic analysis. Sci. China Math., 56(4):789–802, 2013.
G. G. Lorentz . Some new functional spaces. Ann. of Math., 51(2):37–55, 1950.
G. G. Lorentz . On the theory of spaces Λ. Pacific J. Math., 1(3):411–429, 1951.
G. G. Lorentz . Relations between function spaces. Proc. Amer. Math. Soc., 12(1):127–132, 1961.
L. Maligranda . Orlicz spaces and interpolation. Seminários de Matemática, Universidade Estadual de Campinas, Departamento de Matemática, Campinas, 1989.
L. Maligranda and E. Nakai . Pointwise multipliers of Orlicz spaces. Arch. Math. (Basel), 95(3):251–256, 2010.
A. A. Masta , H. Gunawan and W.Setya. Budhi . Inclusion Properties of Orlicz and Weak Orlicz Spaces. J. Math. Fundam. Sci., 48(3):193–203, 2016.
A. Molchanova . A note on the continuity of minors in grand Lebesgue spaces. J. Fixed Point Theory Appl., 21(2):Paper no. 49, 13 pp., 2019.
E. I. Ostrovsky . Exponential Estimations for Random Fields, (Russian), Moscow-Obninsk, OINPE, 1999.
E. I. Ostrovsky . Bide-side exponential and moment inequalities for tail of distributions of polynomial martingales. arXiv:math/0406532v1 [math.PR] 25 Jun 2004.
E.I. Ostrovsky and L. Sirota . Moment Banach spaces: theory and applications. HIAT Journal of Science and Engineering, C, Vol., 4(1-2):233–262, 2007.
E. I. Ostrovsky and L. Sirota . Individual lower bounds for Calderon’s generalized Lorentz norm estimates. arXiv:1210.4832v1 [math.FA] 17 Oct 2012.
L. Pick , A. Kufner , O. John and S. Fučík . Function Spaces, Volume 1, 2nd Revised and Extended Edition. De Gruyter Series in Nonlinear Analysis and Applications 14, De Gruyter, Berlin 2013.
M. M. Rao and Z.D. Ren . Theory of Orlicz Spaces. New York: Marcel Dekker Inc, 1991.
M. M. Rao and Z.D. Ren . Applications of Orlicz Spaces. New York: Marcel Dekker Inc, 2002.
J. Soria . Lorentz spaces of weak type. Quart. J. Math. Oxford (2), 49(193):93–103, 1998.
E. Stein and G. Weiss . Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, 1971.
A. Torchinsky . Interpolation of operators and Orlicz classes. Studia Math., 59(2):177–207. 1976/77.