Authors:
Maria Rosaria Formica Parthenope University of Naples, via Generale Parisi 13, Palazzo Pacanowsky, 80132, Napoli, Italy

Search for other papers by Maria Rosaria Formica in
Current site
Google Scholar
PubMed
Close
and
Eugeny Ostrovsky Department of Mathematics and Statistics, Bar-Ilan University, 59200, Ramat Gan, Israel

Search for other papers by Eugeny Ostrovsky in
Current site
Google Scholar
PubMed
Close
Restricted access

We provide necessary and sufficient conditions for the coincidence, up to equivalence of the norms, between strong and weak Orlicz spaces. Roughly speaking, this coincidence holds true only for the so-called exponential spaces.

We also find the exact value of the embedding constant which appears in the corresponding norm inequality.

  • [1]

    I. Ahmed , A. Fiorenza , M. R. Formica , A. Gogatishvili and J.M. Rakotoson . Some new results related to Lorentz GΓ-spaces and interpolation. J. Math. Anal. Appl., 483(2):24 pp., 2020.

    • Search Google Scholar
    • Export Citation
  • [2]

    I. Ahmed , A. Fiorenza and A. Hafeez . Some Interpolation Formulae for Grand and Small Lorentz Spaces. Mediterr. J. Math., 17(2):Art. 57, 21 pp., 2020.

    • Search Google Scholar
    • Export Citation
  • [3]

    G. Anatriello and M.R. Formica . Weighted fully measurable grand Lebesgue spaces and the maximal theorem. Ric. Mat., 65(1):221233, 2016.

    • Search Google Scholar
    • Export Citation
  • [4]

    G. Anatriello , M. R. Formica and R. Giova . Fully measurable small Lebesgue spaces. J. Math. Anal. Appl., 447(1):550563, 2017.

  • [5]

    T. Andô , On products of Orlicz spaces. Math. Ann., 140:174186, 1960.

  • [6]

    C. Bennett and R. Sharpley . Interpolation of Operators. Academic Press, New York, 1988.

  • [7]

    C. Capone and M. R. Formica . A decomposition of the dual space of some Banach function spaces. J. Funct. Spaces Appl. 2012, Art. ID 737534, 10 pp.

    • Search Google Scholar
    • Export Citation
  • [8]

    C. Capone , M. R. Formica and R. Giova . Grand Lebesgue spaces with respect to measurable functions. Nonlinear Anal., 85:125131, 2013.

    • Search Google Scholar
    • Export Citation
  • [9]

    M. J. Carro , J. Raposo and J. Soria . Recent developments in the theory of Lorentz spaces and weighted inequalities. Mem. Amer. Math. Soc., 187(877):xii+128, 2007.

    • Search Google Scholar
    • Export Citation
  • [10]

    A. Cianchi . Strong and weak type inequalities for some classical operators in Orlicz spaces. J. London Math. Soc.(2), 60(1):187202, 1999.

    • Search Google Scholar
    • Export Citation
  • [11]

    M. Cwikel , A. Kaminska , L. Maligranda and L. Pick . Are generalized Lorentz “spaces” really spaces?. Proc. Amer. Math. Soc., 132(12):36153625, 2004.

    • Search Google Scholar
    • Export Citation
  • [12]

    D. Cruz-Uribe and M. Krbec . Localization and extrapolation in Orlicz-Lorentz spaces. Function spaces, interpolation theory and related topics (Lund, 2000), 273283, de Gruyter, Berlin, 2002.

    • Search Google Scholar
    • Export Citation
  • [13]

    D.E. Edmunds and W.D. Evans . Hardy operators, function spaces and embeddings. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2004.

    • Search Google Scholar
    • Export Citation
  • [14]

    D. E. Edmunds and M. Krbec . On decomposition in exponential Orlicz spaces. Math. Nachr., 213:7788, 2000.

  • [15]

    F. Farroni , A. Fiorenza and R. Giova . A sharp blow-up estimate for the Lebesgue norm. Rev. Mat. Complut., 32(3):745766, 2019.

  • [16]

    A. Fiorenza . Duality and reflexivity in grand Lebesgue spaces. Collect. Math., 51(2):131148, 2000.

  • [17]

    A. Fiorenza , M. R. Formica , A. Gogatishvili , T. Kopaliani and J.M. Rakotoson . Characterization of interpolation between grand, small or classical Lebesgue spaces. Nonlinear Anal., 177:422453, 2018.

    • Search Google Scholar
    • Export Citation
  • [18]

    A. Fiorenza , M. R. Formica , T. Roskovec and F. Soudsky . Gagliardo–Nirenberg inequality for rearrangement-invariant Banach function spaces. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 30(4):847864, 2019.

    • Search Google Scholar
    • Export Citation
  • [19]

    M. R. Formica , Y. V. Kozachenko , E. Ostrovsky and L. Sirota . Exponential Tail Estimates in the Law of Ordinary Logarithm (LOL) for Triangular Arrays of Random Variables. Lith. Math. J., 60(3):330358, 2020.

    • Search Google Scholar
    • Export Citation
  • [20]

    A. T. Gürkanli . Inclusions and the approximate identities of the generalized grand Le-besgue spaces. Turkish J. Math., 42(6):31953203, 2018.

    • Search Google Scholar
    • Export Citation
  • [21]

    B. Iaffei . Comparison of two weak versions of the Orlicz spaces. Rev. Un. Mat. Argentina, 40(1-2):191202, 1996.

  • [22]

    P. Jain , A. Molchanova , M. Singh and S. Vodopyanov . On grand Sobolev spaces and point-wise description of Banach function spaces. Nonlinear Anal., 202:112100, 17 pp., 2021.

    • Search Google Scholar
    • Export Citation
  • [23]

    P. Jain , M. Singh and A.P. Singh . Recent trends in grand Lebesgue spaces. In Function Spaces and Inequalities, volume 206 of Springer Proceedings in Mathematics & Statistics, pages 137159. Springer, 2017.

    • Search Google Scholar
    • Export Citation
  • [24]

    P. Jain , A. P. Singh , M. Singh and V.D. Stepanov . Sawyer’s duality principle for grand Lebesgue spaces. Math. Nachr., 292(4):841849, 2019.

    • Search Google Scholar
    • Export Citation
  • [25]

    Y. Jiao , L. Wu and L. Peng . Weak Orlicz-Hardy martingale spaces. Internat. J. Math., 26(8):1550062, 26 pp., 2015.

  • [26]

    R. Kawasumi and E. Nakai . Pointwise multipliers on weak Orlicz spaces. Hiroshima Math. J., 50(2):169184, 2020.

  • [27]

    Yu. V. Kozachenko and E. I. Ostrovsky . Banach Spaces of random variables of sub-Gaussian type. Teor. Veroyatn. Mat. Stat., Kiev„ 32(134):4253, 1985. (In Russian. English translation: Theory Probab. Math. Stat., 32:45–56, 1986.)

    • Search Google Scholar
    • Export Citation
  • [28]

    Yu. V. Kozachenko , E. I. Ostrovsky and L. Sirota . Relations between exponential tails, moments and moment generating functions for random variables and vectors. arXiv:1701.01901v1 [math.FA] 8 Jan 2017.

    • Search Google Scholar
    • Export Citation
  • [29]

    Yu. V . Kozachenko and M. Sergiienko. Estimates of distributions for some functionals of stochastic processes from an Orlicz space. Random Oper. Stoch. Equ., 22(2):6572, 2014.

    • Search Google Scholar
    • Export Citation
  • [30]

    M. A. Krasnosel’ski˘i and Ja. B. Ruticki˘i . Convex Functions and Orlicz Spaces. P. Noordhoff Ltd, Groningen, 1961.

  • [31]

    K. Leśnik and J. Tomaszewski . Pointwise multipliers of Orlicz function spaces and factor-ization. Positivity, 21(4):15631573, 2017.

    • Search Google Scholar
    • Export Citation
  • [32]

    E. H. Lieb and M. Loss . Analysis. Second edition. American Mathematical Society, Providence, RI 2001.

  • [33]

    N. Liu and Y. Ye . Weak Orlicz space and its convergence theorems. Acta Math. Sci. Ser. B, 30(5):14921500, 2010.

  • [34]

    P. Liu , Y. Hou and M. Wang . Weak Orlicz space and its applications to the martingale theory. Sci. China Math., 53(4):905916, 2010.

    • Search Google Scholar
    • Export Citation
  • [35]

    P. Liu and M. Wang . Weak Orlicz spaces: some basic properties and their applications to harmonic analysis. Sci. China Math., 56(4):789802, 2013.

    • Search Google Scholar
    • Export Citation
  • [36]

    G. G. Lorentz . Some new functional spaces. Ann. of Math., 51(2):3755, 1950.

  • [37]

    G. G. Lorentz . On the theory of spaces Λ. Pacific J. Math., 1(3):411429, 1951.

  • [38]

    G. G. Lorentz . Relations between function spaces. Proc. Amer. Math. Soc., 12(1):127132, 1961.

  • [39]

    L. Maligranda . Orlicz spaces and interpolation. Seminários de Matemática, Universidade Estadual de Campinas, Departamento de Matemática, Campinas, 1989.

    • Search Google Scholar
    • Export Citation
  • [40]

    L. Maligranda and E. Nakai . Pointwise multipliers of Orlicz spaces. Arch. Math. (Basel), 95(3):251256, 2010.

  • [41]

    A. A. Masta , H. Gunawan and W.Setya. Budhi . Inclusion Properties of Orlicz and Weak Orlicz Spaces. J. Math. Fundam. Sci., 48(3):193203, 2016.

    • Search Google Scholar
    • Export Citation
  • [42]

    A. Molchanova . A note on the continuity of minors in grand Lebesgue spaces. J. Fixed Point Theory Appl., 21(2):Paper no. 49, 13 pp., 2019.

    • Search Google Scholar
    • Export Citation
  • [43]

    E. I. Ostrovsky . Exponential Estimations for Random Fields, (Russian), Moscow-Obninsk, OINPE, 1999.

  • [44]

    E. I. Ostrovsky . Bide-side exponential and moment inequalities for tail of distributions of polynomial martingales. arXiv:math/0406532v1 [math.PR] 25 Jun 2004.

    • Search Google Scholar
    • Export Citation
  • [45]

    E.I. Ostrovsky and L. Sirota . Moment Banach spaces: theory and applications. HIAT Journal of Science and Engineering, C, Vol., 4(1-2):233262, 2007.

    • Search Google Scholar
    • Export Citation
  • [46]

    E. I. Ostrovsky and L. Sirota . Individual lower bounds for Calderon’s generalized Lorentz norm estimates. arXiv:1210.4832v1 [math.FA] 17 Oct 2012.

    • Search Google Scholar
    • Export Citation
  • [47]

    L. Pick , A. Kufner , O. John and S. Fučík . Function Spaces, Volume 1, 2nd Revised and Extended Edition. De Gruyter Series in Nonlinear Analysis and Applications 14, De Gruyter, Berlin 2013.

    • Search Google Scholar
    • Export Citation
  • [48]

    M. M. Rao and Z.D. Ren . Theory of Orlicz Spaces. New York: Marcel Dekker Inc, 1991.

  • [49]

    M. M. Rao and Z.D. Ren . Applications of Orlicz Spaces. New York: Marcel Dekker Inc, 2002.

  • [50]

    J. Soria . Lorentz spaces of weak type. Quart. J. Math. Oxford (2), 49(193):93103, 1998.

  • [51]

    E. Stein and G. Weiss . Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, 1971.

  • [52]

    A. Torchinsky . Interpolation of operators and Orlicz classes. Studia Math., 59(2):177207. 1976/77.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)