Authors:
Narges Bagherifard Department of Mathematical Sciences, Sharif University of Technology, Azadi Ave., Tehran, Iran

Search for other papers by Narges Bagherifard in
Current site
Google Scholar
PubMed
Close
and
Eaman Eftekhary School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran

Search for other papers by Eaman Eftekhary in
Current site
Google Scholar
PubMed
Close
Restricted access

Suppose that K and K' are knots inside the homology spheres Y and Y', respectively. Let X = Y (K, K') be the 3-manifold obtained by splicing the complements of K and K' and Z be the three-manifold obtained by 0 surgery on K. When Y' is an L-space, we use the splicing formula of [1] to show that the rank of H Y ^ (X ) is bounded below by the rank of H Y ^ (Y ) if τ(K 2) = 0 and is bounded below by rank( H Y ^ (Z)) − 2 rank( H Y ^ (Y)) + 1 if τ(K') ≠ 0.

  • [1]

    Eaman Eftekhary . Bordered Floer homology and existence of incompressible tori in homology spheres. Compos. Math., 154(6):12221268, 2018.

    • Search Google Scholar
    • Export Citation
  • [2]

    Eaman Eftekhary . Floer homology and splicing knot complements. Algebr. Geom. Topol., 15(6):31553213, 2015.

  • [3]

    Mikhael Gromov . Metric structures for Riemannian and non-Riemannian spaces, volume 152 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1999.

    • Search Google Scholar
    • Export Citation
  • [4]

    Jonathan Hanselman, Jacob Rasmussen and Liam Watson . Bordered Floer homology for manifolds with torus boundary via immersed curves. preprint, available at arXiv:1604.03466.

    • Search Google Scholar
    • Export Citation
  • [5]

    Matthew Hedden and Adam Simon Levine . Splicing knot complements and bordered Floer homology. J. Reine Angew. Math., 720:129154, 2016.

    • Search Google Scholar
    • Export Citation
  • [6]

    Jennifer Hom, Adam Simon Levine and Tye Lidman Knot concordance in homology cobordisms. arXiv:1801.07770, 2018.

  • [7]

    Çăgri Karakurt and Tye Lidman . Rank inequalities for the Heegaard Floer homology of Seifert homology spheres. Trans. Amer. Math. Soc., 367(10):72917322, 2015.

    • Search Google Scholar
    • Export Citation
  • [8]

    Peter Ozsváth and Zoltán Szabó . Knot Floer homology and the four-ball genus. Geom. Topol., 7:615639, 2003.

  • [9]

    Peter Ozsváth and Zoltán Szabó . Holomorphic disks and knot invariants. Adv. Math., 186(1):58116, 2004.

  • [10]

    Peter Ozsváth and Zoltán Szabó . Holomorphic disks and topological invariants for closed three-manifolds. Ann. of Math. (2), 159(3):10271158, 2004.

    • Search Google Scholar
    • Export Citation
  • [11]

    Peter S. Ozsváth and Zoltán Szabó . Knot Floer homology and integer surgeries. Algebr. Geom. Topol., 8(1):101153, 2008.

  • [12]

    Katherine Raoux . s-invariants for knots in rational homology spheres. arXiv:1611.09415, 2016.

  • [13]

    Shicheng Wang , Non-zero degree maps between 3-manifolds. Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 457468, Higher Ed. Press, Beijing, 2002.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.305
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)