Authors:
Antonio Alfieri University of British Columbia, Mathematics Department, 1984 Mathematics Rd, Vancouver, BC V6T 1Z2, Canada

Search for other papers by Antonio Alfieri in
Current site
Google Scholar
PubMed
Close
,
Daniele Celoria Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Rd, Oxford OX2 6GG, UK

Search for other papers by Daniele Celoria in
Current site
Google Scholar
PubMed
Close
, and
András Stipsicz Alfréd Rényi Institute of Mathematics, 1053. Budapest, Reáltanoda utca 13–15, Hungary

Search for other papers by András Stipsicz in
Current site
Google Scholar
PubMed
Close
Restricted access

We extend the construction of Y-type invariants to null-homologous knots in rational homology three-spheres. By considering m-fold cyclic branched covers with m a prime power, this extension provides new knot concordance invariants Y m C ( K ) of knots in S3. We give computations of some of these invariants for alternating knots and reprove independence results in the smooth concordance group.

  • [1]

    A. Alfieri . Upsilon-type concordance invariants. Algebraic & Geometric Topology, 19(7) 33153334, 2019.

  • [2]

    A. Alfieri . Deformations of lattice cohomology and the upsilon invariant. In preparation, 2018.

  • [3]

    K. Baker , E. Grigsby , and M. Hedden . Grid diagrams for lens spaces and combinatorial knot Floer homology. International Mathematics Research Notices, 2008.

    • Search Google Scholar
    • Export Citation
  • [4]

    A. Casson and C. Gordon . On slice knots in dimension three. In Algebraic and geometric to- pology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, Proc. Sympos. Pure Math., XXXII, pages 39-53. Amer. Math. Soc., Providence, R.I., 1978.

    • Search Google Scholar
    • Export Citation
  • [5]

    D. Celoria . On concordances in 3-manifolds. J. Topol., 11(1):180200, 2018.

  • [6]

    D. Celoria and A. Lecuona . Alternating knots and double branched covers. In preparation, 2019.

  • [7]

    Jae Choon Cha . The structure of the rational concordance group of knots. Vol. 182. American Mathematical Soc., 2007.

  • [8]

    P. Ghiggini . Knot Floer homology detects genus-one fibred knots. American Journal of Mathematics, 11511169, 2008.

  • [9]

    E. Grigsby . Combinatorial description of knot Floer homology of cyclic branched covers. arXiv preprint math/0610238, 2006.

  • [10]

    E. Grigsby . Knot Floer homology in cyclic branched covers. Algebraic & Geometric Topo-logy, 6(3):13551398, 2006.

  • [11]

    E. Grigsby , D. Ruberman , and S. Strle . Knot concordance and Heegaard Floer homology invariants in branched covers. Geometry & Topology, 12(4):22492275, 2008.

    • Search Google Scholar
    • Export Citation
  • [12]

    K. Hendricks and J. Hom . A note on knot concordance and involutive knot Floer homology. Breadth in contemporary topology, Proc. Sympos. Pure Math. 102, 113-118. Amer. Math. Soc., Providence, RI, 2019,

    • Search Google Scholar
    • Export Citation
  • [13]

    K. Hendricks and C. Manolescu . Involutive Heegaard Floer homology. Duke Math. J., 7:12111299, 2017.

  • [14]

    Matthew. Hogancamp and Charles. Livingston . An involutive upsilon knot invariant. arXiv preprint arXiv:1710.08360, 2017.

  • [15]

    J. Hom . Bordered Heegaard Floer homology and the tau-invariant of cable knots. Journal of Topology, 7:287326, 2014.

  • [16]

    J. Hom . A survey on Heegaard Floer homology and concordance. Journal of Knot Theory and Its Ramifications, 26(02):1740015, 2017.

  • [17]

    J. Hom , A. Levine , and T. Lidman . Knot concordance in homology cobordisms. arXiv pre- print arXiv:1801.07770, 2018.

  • [18]

    A. Levine . Computing knot Floer homology in cyclic branched covers. Algebraic & Geo-metric Topology, 8(2):11631190, 2008.

  • [19]

    W. B. Raymond Lickorish . An introduction to knot theory. Springer Science & Business Media, Vol. 175., 2012.

  • [20]

    P. Lisca . Sums of lens spaces bounding rational balls. Algebraic & Geometric Topology, 7(4):21412164, 2007.

  • [21]

    R. Litherland . Signatures of iterated torus knots. In Topology of low-dimensional manifolds, pages 7184. Springer, 1979.

  • [22]

    C. Livingston . Seifert forms and concordance. Geometry & Topology, 6(1):403408, 2002.

  • [23]

    C. Livingston . Notes on the knot concordance invariant upsilon. Algebr. Geom. Topol., 17(1):111130, 2017.

  • [24]

    C. Manolescu , P. Ozsváth , and S. Sarkar . A combinatorial description of knot Floer homology. Annals of Mathematics, pages 633660, 2009.

    • Search Google Scholar
    • Export Citation
  • [25]

    Y. Ni . Knot Floer homology detects fibred knots. Inventiones Mathematicae, 3:577608, 2007.

  • [26]

    Owens, Brendan , and Sašo Strle Rational homology spheres and the four-ball genus of knots. Advances in Mathematics, 200(1):196-216, 2006.

    • Search Google Scholar
    • Export Citation
  • [27]

    P. Ozsváth , A. Stipsicz , and Z. Szabó . Grid homology for knots and links, volume 208 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2015.

    • Search Google Scholar
    • Export Citation
  • [28]

    P. Ozsváth , A. Stipsicz , and Z. Szabó . Concordance homomorphisms from knot Floer homology. Adv. Math., 315:366426, 2017.

  • [29]

    P. Ozsváth and Z. Szabó . Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary. Advances in Mathematics, 173(2):179261, 2003.

    • Search Google Scholar
    • Export Citation
  • [30]

    P. Ozsváth and Z. Szabó . Holomorphic disks and genus bounds. Geometry and Topology, 8:311334, 2004.

  • [31]

    P. Ozsváth and Z. Szabó . Holomorphic disks and knot invariants. Advances in Mathematics, 8:58116, 2004.

  • [32]

    P. Ozsváth and Z. Szabó . Holomorphic triangles and invariants for smooth four-manifolds. Advances in Mathematics, 202:326400, 2006.

    • Search Google Scholar
    • Export Citation
  • [33]

    I. Petkova . Cables of thin knots and bordered Heegaard Floer homology. Quantum Topol., 4(4):377409, 2013.

  • [34]

    K. Raoux . s-invariants for knots in rational homology spheres. Algebraic & Geometric To-pology, 20(4): 1601-1640, 2020.

  • [35]

    J. Rasmussen . Floer homology and knot complements. arXiv: math/0306378, 2003.

  • [36]

    Jacob. Rasmussen and Sarah Dean. Rasmussen . Floer simple manifolds and L-space intervals. Advances in Mathematics, 322:738805, 2017.

    • Search Google Scholar
    • Export Citation
  • [37]

    V. Turaev . Torsion invariants of Spinc-structures on3-manifolds. Math. Res. Lett., 4(5):679695, 1997.

  • [38]

    I. Zemke . Connected sums and involutive knot Floer homology. Proc. Lond. Math. Soc., 119:214265, 2019.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.305
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)