Authors:
Nobuo Iida Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153- 8914, Japan

Search for other papers by Nobuo Iida in
Current site
Google Scholar
PubMed
Close
and
Masaki Taniguchi 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Search for other papers by Masaki Taniguchi in
Current site
Google Scholar
PubMed
Close
Restricted access

We introduce a Floer homotopy version of the contact invariant introduced by Kronheimer–Mrowka–Ozsváth–Szabó. Moreover, we prove a gluing formula relating our invariant with the first author’s Bauer–Furuta type invariant, which refines Kronheimer–Mrowka’s invariant for 4-manifolds with contact boundary. As an application, we give a constraint for a certain class of symplectic fillings using equivariant KO-cohomology.

  • [1]

    M. F. Atiyah, V. K. Patodi, and I. M. Singer. Spectral asymmetry and Riemannian geometry. I. Math. Proc. Cambridge Philos. Soc., 77:4369, 1975.

    • Search Google Scholar
    • Export Citation
  • [2]

    John A. Baldwin and Steven Sivek. Instanton Floer homology and contact structures. Se-lecta Math. (N.S.), 22(2):939978, 2016.

  • [3]

    Stefan Bauer. A stable cohomotopy refinement of Seiberg–Witten invariants. II. Invent. Math., 155(1):2140, 2004.

  • [4]

    Stefan Bauer and Mikio Furuta. A stable cohomotopy refinement of Seiberg–Witten in-variants. I. Invent. Math., 155(1):119, 2004.

  • [5]

    Jonathan M. Bloom. A link surgery spectral sequence in monopole Floer homology. Adv. Math., 226(4):32163281, 2011.

  • [6]

    Benoit Charbonneau. Analytic aspects of periodic instantons. ProQuest LLC, Ann Arbor, MI, 2004. Thesis (Ph.D.)Massachusetts Institute of Technology.

    • Search Google Scholar
    • Export Citation
  • [7]

    Vincent Colin, Paolo Ghiggini, and Ko Honda. The equivalence of heegaard floer homology and embedded contact homology iii: from hat to plus. 2012.

    • Search Google Scholar
    • Export Citation
  • [8]

    Vincent Colin, Paolo Ghiggini, and Ko Honda. The equivalence of heegaard floer homology and embedded contact homology via open book decompositions i. 2012.

    • Search Google Scholar
    • Export Citation
  • [9]

    Vincent Colin, Paolo Ghiggini, and Ko Honda. The equivalence of heegaard floer homology and embedded contact homology via open book decompositions ii. 2012.

    • Search Google Scholar
    • Export Citation
  • [10]

    Mariano Echeverria. Naturality of the contact invariant in monopole Floer homology un-der strong symplectic cobordisms. Algebr. Geom. Topol., 20(4):17951875, 2020.

    • Search Google Scholar
    • Export Citation
  • [11]

    Kim A. Frøyshov. Monopole Floer homology for rational homology 3-spheres. Duke Math. J., 155(3):519576, 2010.

  • [12]

    M. Furuta. Monopole equation and the 11 8 conjecture. Math. Res. Lett., 8(3):279291, 2001.

  • [13]

    Paolo Ghiggini and Jeremy Van Horn-Morris. Tight contact structures on the Brieskorn spheres −Σ(2, 3, 6n − 1) and contact invariants. J. Reine Angew. Math., 718:124, 2016.

    • Search Google Scholar
    • Export Citation
  • [14]

    Robert E. Gompf. Handlebody construction of Stein surfaces. Ann. of Math. (2), 148(2):619693, 1998.

  • [15]

    Nobuo Iida. A Bauer-Furuta type refinement of Kronheimer-Mrowka’s invariant for 4- manifolds with contact boundary. 2019.

  • [16]

    Tirasan Khandhawit. A new gauge slice for the relative Bauer-Furuta invariants. Geom. Topol., 19(3):16311655, 2015.

  • [17]

    Tirasan Khandhawit, Jianfeng Lin, and Hirofumi Sasahira. Unfolded Seiberg–Witten Floer spectra, I: Definition and invariance. Geom. Topol., 22(4):20272114, 2018.

    • Search Google Scholar
    • Export Citation
  • [18]

    Tirasan Khandhawit, Jianfeng Lin, and Hirofumi Sasahira. Unfolded seiberg–witten floer spectra, ii: Relative invariants and the gluing theorem. 2018.

    • Search Google Scholar
    • Export Citation
  • [19]

    P. Kronheimer, T. Mrowka, P. Ozsváth, and Z. Szabó. Monopoles and lens space surgeries. Ann. of Math. (2), 165(2):457546, 2007.

  • [20]

    P. B. Kronheimer and T. S. Mrowka. Monopoles and contact structures. Invent. Math., 130(2):209255, 1997.

  • [21]

    Peter Kronheimer and Tomasz Mrowka. Monopoles and three-manifolds, volume 10 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2007.

    • Search Google Scholar
    • Export Citation
  • [22]

    Cagatay Kutluhan, Yi-Jen Lee, and Cliff H. Taubes. HF = HM v: Seiberg–witten floer homology and handle addition. 2012.

  • [23]

    Cagatay Kutluhan, Yi-Jen Lee, and Clifford Henry Taubes. HF = HM i : Heegaard floer homology and seiberg–witten floer homology. 2010.

  • [24]

    Cagatay Kutluhan, Yi-Jen Lee, and Clifford Henry Taubes. HF = HM ii: Reeb orbits and holomorphic curves for the ech/heegaard-floer correspondence. 2010.

    • Search Google Scholar
    • Export Citation
  • [25]

    Cagatay Kutluhan, Yi-Jen Lee, and Clifford Henry Taubes. HF = HM iii: Holomorphic curves and the differential for the ech/heegaard floer correspondence. 2010.

    • Search Google Scholar
    • Export Citation
  • [26]

    Cagatay Kutluhan, Yi-Jen Lee, and Clifford Henry Taubes. HF = HM iv: The seiberg– witten floer homology and ech correspondence. 2011.

  • [27]

    Tye Lidman and Ciprian Manolescu. The equivalence of two Seiberg–Witten Floer homo- logies. Astérisque, (399):vii+220, 2018.

  • [28]

    Francesco Lin. Indefinite Stein fillings and PIN(2)-monopole Floer homology. Selecta Math. (N.S.), 26(2):Paper No. 18, 15, 2020.

  • [29]

    Francesco Lin and Michael Lipnowski. The seiberg–witten equations and the length spec- trum of hyperbolic three-manifolds. 2018.

  • [30]

    Jianfeng Lin. Pin(2)-equivariant KO-theory and intersection forms of spin 4-manifolds. Algebr. Geom. Topol., 15(2):863902, 2015.

  • [31]

    Jianfeng Lin. The Seiberg–Witten equations on end-periodic manifolds and an obstruction to positive scalar curvature metrics. J. Topol., 12(2):328371, 2019.

    • Search Google Scholar
    • Export Citation
  • [32]

    P. Lisca and G. Matić. Tight contact structures and Seiberg–Witten invariants. Invent. Math., 129(3):509525, 1997.

  • [33]

    Paolo Lisca. Symplectic fillings and positive scalar curvature. Geom. Topol., 2:103116, 1998.

  • [34]

    Robert Lockhart. Fredholm, Hodge and Liouville theorems on noncompact manifolds. Trans. Amer. Math. Soc., 301(1):135, 1987.

  • [35]

    Ciprian Manolescu. Seiberg–Witten Floer stable homotopy type of three-manifolds with b1 = 0. Geom. Topol., 7:889932, 2003.

  • [36]

    Ciprian Manolescu. A gluing theorem for the relative Bauer-Furuta invariants. J. Differ-ential Geom., 76(1):117153, 2007.

  • [37]

    Ciprian Manolescu. On the intersection forms of spin four-manifolds with boundary. Math. Ann., 359(3-4):695728, 2014.

  • [38]

    Ciprian Manolescu. Pin(2)-equivariant Seiberg–Witten Floer homology and the triangula-tion conjecture. J. Amer. Math. Soc., 29(1):147176, 2016.

    • Search Google Scholar
    • Export Citation
  • [39]

    Tomasz Mrowka, Peter Ozsváth, and Baozhen Yu. Seiberg–Witten monopoles on Seifert fibered spaces. Comm. Anal. Geom., 5(4):685791, 1997.

    • Search Google Scholar
    • Export Citation
  • [40]

    Tomasz Mrowka and Yann Rollin. Legendrian knots and monopoles. Algebr. Geom. Topol., 6:169, 2006.

  • [41]

    Hiroshi Ohta and Kaoru Ono. Simple singularities and topology of symplectically filling 4-manifold. Comment. Math. Helv., 74(4):575590, 1999.

    • Search Google Scholar
    • Export Citation
  • [42]

    Peter Ozsváth and Zoltán Szabó. On the Floer homology of plumbed three-manifolds. Geom. Topol., 7:185224, 2003.

  • [43]

    Peter Ozsváth and Zoltán Szabó. Holomorphic disks and genus bounds. Geom. Topol., 8:311334, 2004.

  • [44]

    Peter Ozsváth and Zoltán Szabó. Heegaard Floer homology and contact structures. Duke Math. J., 129(1):3961, 2005.

  • [45]

    Birgit. Schmidt. Spin 4-manifolds and pin(2)-equivariant homotopy theory. Ph. D. thesis, 2003.

  • [46]

    Günter Schwarz. Hodge decomposition—a method for solving boundary value problems, volume 1607 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1995.

    • Search Google Scholar
    • Export Citation
  • [47]

    András I. Stipsicz. Gauge theory and Stein fillings of certain 3-manifolds. Turkish J. Math., 26(1):115130, 2002.

  • [48]

    Clifford Henry Taubes. Embedded contact homology and Seiberg-Witten Floer cohomo-logy I. Geom. Topol., 14(5):24972581, 2010.

  • [49]

    Clifford Henry Taubes. Embedded contact homology and Seiberg-Witten Floer cohomo-logy II. Geom. Topol., 14(5):25832720, 2010.

  • [50]

    Clifford Henry Taubes. Embedded contact homology and Seiberg-Witten Floer cohomo-logy III. Geom. Topol., 14(5):27212817, 2010.

  • [51]

    Clifford Henry Taubes. Embedded contact homology and Seiberg-Witten Floer cohomo-logy IV. Geom. Topol., 14(5):28192960, 2010.

  • [52]

    Clifford Henry Taubes. Embedded contact homology and Seiberg-Witten Floer cohomo-logy V. Geom. Topol., 14(5):29613000, 2010.

  • [53]

    Bülent Tosun. Tight small Seifert fibered manifolds with e0 = −2. Algebr. Geom. Topol., 20(1):127, 2020.

  • [54]

    Edward Witten. Monopoles and four-manifolds. Math. Res. Lett., 1(6):769796, 1994.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.305
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)