We introduce a Floer homotopy version of the contact invariant introduced by Kronheimer–Mrowka–Ozsváth–Szabó. Moreover, we prove a gluing formula relating our invariant with the first author’s Bauer–Furuta type invariant, which refines Kronheimer–Mrowka’s invariant for 4-manifolds with contact boundary. As an application, we give a constraint for a certain class of symplectic fillings using equivariant KO-cohomology.
M. F. Atiyah, V. K. Patodi, and I. M. Singer. Spectral asymmetry and Riemannian geometry. I. Math. Proc. Cambridge Philos. Soc., 77:43–69, 1975.
John A. Baldwin and Steven Sivek. Instanton Floer homology and contact structures. Se-lecta Math. (N.S.), 22(2):939–978, 2016.
Stefan Bauer. A stable cohomotopy refinement of Seiberg–Witten invariants. II. Invent. Math., 155(1):21–40, 2004.
Stefan Bauer and Mikio Furuta. A stable cohomotopy refinement of Seiberg–Witten in-variants. I. Invent. Math., 155(1):1–19, 2004.
Jonathan M. Bloom. A link surgery spectral sequence in monopole Floer homology. Adv. Math., 226(4):3216–3281, 2011.
Benoit Charbonneau. Analytic aspects of periodic instantons. ProQuest LLC, Ann Arbor, MI, 2004. Thesis (Ph.D.)–Massachusetts Institute of Technology.
Vincent Colin, Paolo Ghiggini, and Ko Honda. The equivalence of heegaard floer homology and embedded contact homology iii: from hat to plus. 2012.
Vincent Colin, Paolo Ghiggini, and Ko Honda. The equivalence of heegaard floer homology and embedded contact homology via open book decompositions i. 2012.
Vincent Colin, Paolo Ghiggini, and Ko Honda. The equivalence of heegaard floer homology and embedded contact homology via open book decompositions ii. 2012.
Mariano Echeverria. Naturality of the contact invariant in monopole Floer homology un-der strong symplectic cobordisms. Algebr. Geom. Topol., 20(4):1795–1875, 2020.
Kim A. Frøyshov. Monopole Floer homology for rational homology 3-spheres. Duke Math. J., 155(3):519–576, 2010.
M. Furuta. Monopole equation and the 11 8 conjecture. Math. Res. Lett., 8(3):279–291, 2001.
Paolo Ghiggini and Jeremy Van Horn-Morris. Tight contact structures on the Brieskorn spheres −Σ(2, 3, 6n − 1) and contact invariants. J. Reine Angew. Math., 718:1–24, 2016.
Robert E. Gompf. Handlebody construction of Stein surfaces. Ann. of Math. (2), 148(2):619–693, 1998.
Nobuo Iida. A Bauer-Furuta type refinement of Kronheimer-Mrowka’s invariant for 4- manifolds with contact boundary. 2019.
Tirasan Khandhawit. A new gauge slice for the relative Bauer-Furuta invariants. Geom. Topol., 19(3):1631–1655, 2015.
Tirasan Khandhawit, Jianfeng Lin, and Hirofumi Sasahira. Unfolded Seiberg–Witten Floer spectra, I: Definition and invariance. Geom. Topol., 22(4):2027–2114, 2018.
Tirasan Khandhawit, Jianfeng Lin, and Hirofumi Sasahira. Unfolded seiberg–witten floer spectra, ii: Relative invariants and the gluing theorem. 2018.
P. Kronheimer, T. Mrowka, P. Ozsváth, and Z. Szabó. Monopoles and lens space surgeries. Ann. of Math. (2), 165(2):457–546, 2007.
P. B. Kronheimer and T. S. Mrowka. Monopoles and contact structures. Invent. Math., 130(2):209–255, 1997.
Peter Kronheimer and Tomasz Mrowka. Monopoles and three-manifolds, volume 10 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2007.
Cagatay Kutluhan, Yi-Jen Lee, and Cliff H. Taubes. HF = HM v: Seiberg–witten floer homology and handle addition. 2012.
Cagatay Kutluhan, Yi-Jen Lee, and Clifford Henry Taubes. HF = HM i : Heegaard floer homology and seiberg–witten floer homology. 2010.
Cagatay Kutluhan, Yi-Jen Lee, and Clifford Henry Taubes. HF = HM ii: Reeb orbits and holomorphic curves for the ech/heegaard-floer correspondence. 2010.
Cagatay Kutluhan, Yi-Jen Lee, and Clifford Henry Taubes. HF = HM iii: Holomorphic curves and the differential for the ech/heegaard floer correspondence. 2010.
Cagatay Kutluhan, Yi-Jen Lee, and Clifford Henry Taubes. HF = HM iv: The seiberg– witten floer homology and ech correspondence. 2011.
Tye Lidman and Ciprian Manolescu. The equivalence of two Seiberg–Witten Floer homo- logies. Astérisque, (399):vii+220, 2018.
Francesco Lin. Indefinite Stein fillings and PIN(2)-monopole Floer homology. Selecta Math. (N.S.), 26(2):Paper No. 18, 15, 2020.
Francesco Lin and Michael Lipnowski. The seiberg–witten equations and the length spec- trum of hyperbolic three-manifolds. 2018.
Jianfeng Lin. Pin(2)-equivariant KO-theory and intersection forms of spin 4-manifolds. Algebr. Geom. Topol., 15(2):863–902, 2015.
Jianfeng Lin. The Seiberg–Witten equations on end-periodic manifolds and an obstruction to positive scalar curvature metrics. J. Topol., 12(2):328–371, 2019.
P. Lisca and G. Matić. Tight contact structures and Seiberg–Witten invariants. Invent. Math., 129(3):509–525, 1997.
Paolo Lisca. Symplectic fillings and positive scalar curvature. Geom. Topol., 2:103–116, 1998.
Robert Lockhart. Fredholm, Hodge and Liouville theorems on noncompact manifolds. Trans. Amer. Math. Soc., 301(1):1–35, 1987.
Ciprian Manolescu. Seiberg–Witten Floer stable homotopy type of three-manifolds with b1 = 0. Geom. Topol., 7:889–932, 2003.
Ciprian Manolescu. A gluing theorem for the relative Bauer-Furuta invariants. J. Differ-ential Geom., 76(1):117–153, 2007.
Ciprian Manolescu. On the intersection forms of spin four-manifolds with boundary. Math. Ann., 359(3-4):695–728, 2014.
Ciprian Manolescu. Pin(2)-equivariant Seiberg–Witten Floer homology and the triangula-tion conjecture. J. Amer. Math. Soc., 29(1):147–176, 2016.
Tomasz Mrowka, Peter Ozsváth, and Baozhen Yu. Seiberg–Witten monopoles on Seifert fibered spaces. Comm. Anal. Geom., 5(4):685–791, 1997.
Tomasz Mrowka and Yann Rollin. Legendrian knots and monopoles. Algebr. Geom. Topol., 6:1–69, 2006.
Hiroshi Ohta and Kaoru Ono. Simple singularities and topology of symplectically filling 4-manifold. Comment. Math. Helv., 74(4):575–590, 1999.
Peter Ozsváth and Zoltán Szabó. On the Floer homology of plumbed three-manifolds. Geom. Topol., 7:185–224, 2003.
Peter Ozsváth and Zoltán Szabó. Holomorphic disks and genus bounds. Geom. Topol., 8:311–334, 2004.
Peter Ozsváth and Zoltán Szabó. Heegaard Floer homology and contact structures. Duke Math. J., 129(1):39–61, 2005.
Birgit. Schmidt. Spin 4-manifolds and pin(2)-equivariant homotopy theory. Ph. D. thesis, 2003.
Günter Schwarz. Hodge decomposition—a method for solving boundary value problems, volume 1607 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1995.
András I. Stipsicz. Gauge theory and Stein fillings of certain 3-manifolds. Turkish J. Math., 26(1):115–130, 2002.
Clifford Henry Taubes. Embedded contact homology and Seiberg-Witten Floer cohomo-logy I. Geom. Topol., 14(5):2497–2581, 2010.
Clifford Henry Taubes. Embedded contact homology and Seiberg-Witten Floer cohomo-logy II. Geom. Topol., 14(5):2583–2720, 2010.
Clifford Henry Taubes. Embedded contact homology and Seiberg-Witten Floer cohomo-logy III. Geom. Topol., 14(5):2721–2817, 2010.
Clifford Henry Taubes. Embedded contact homology and Seiberg-Witten Floer cohomo-logy IV. Geom. Topol., 14(5):2819–2960, 2010.
Clifford Henry Taubes. Embedded contact homology and Seiberg-Witten Floer cohomo-logy V. Geom. Topol., 14(5):2961–3000, 2010.
Bülent Tosun. Tight small Seifert fibered manifolds with e0 = −2. Algebr. Geom. Topol., 20(1):1–27, 2020.
Edward Witten. Monopoles and four-manifolds. Math. Res. Lett., 1(6):769–796, 1994.