Author:
Irina Gelbukh CIC, Instituto Politécnico Nacional, 07738, Mexico City, Mexico

Search for other papers by Irina Gelbukh in
Current site
Google Scholar
PubMed
Close
Restricted access

We prove criteria for a graph to be the Reeb graph of a function of a given class on a closed manifold: Morse–Bott, round, and in general smooth functions whose critical set consists of a finite number of submanifolds. The criteria are given in terms of whether the graph admits an orientation, which we call S-good orientation, with certain conditions on the degree of sources and sinks, similar to the known notion of good orientation in the context of Morse functions. We also study when such a function is the height function associated with an immersion of the manifold. The condition for a graph to admit an S-good orientation can be expressed in terms of the leaf blocks of the graph.

  • [1]

    Erica Boizan Batista, João Carlos Ferreira Costa, and Ingrid Sofia Meza-Sarmiento. Topo-logical classification of circle-valued simple Morse-Bott functions. Journal of Singularities, 17:388402, 2018.

    • Search Google Scholar
    • Export Citation
  • [2]

    Erica Boizan Batista, João Carlos Ferreira Costa, and Juan J. Nuño-Ballesteros. Loops in generalized Reeb graphs associated to stable circle-valued functions. Journal of Singular-ities, 22:104113, 2020.

    • Search Google Scholar
    • Export Citation
  • [3]

    A.V. Bolsinov and A.T. Fomenko. Integrable Hamiltonian Systems: Geometry, Topology, Clas- sification. CRC Press, USA, 2004.

  • [4]

    Ketty A. de Rezende and Robert D. Franzosa. Lyapunov graphs and fiows on surfaces. Trans. Amer. Math. Soc., 340(2):767784, 1993.

  • [5]

    Herbert Edelsbrunner and John Harer. Computational Topology: An Introduction. American Mathematical Society, 2010.

  • [6]

    John Franks. Nonsingular Smale fiows on S3. Topology, 24(3):265282, 1985.

  • [7]

    Irina Gelbukh. Loops in Reeb graphs of n-manifolds. Discrete Comput. Geom., 59(4):843863, 2018.

  • [8]

    Irina Gelbukh. Approximation of metric spaces by Reeb graphs: Cycle rank of a Reeb graph, the co-rank of the fundamental group, and large components of level sets on Riemannian manifolds. Filomat, 33(7):20312049, 2019.

    • Search Google Scholar
    • Export Citation
  • [9]

    Irina Gelbukh. A finite graph is homeomorphic to the Reeb graph of a Morse–Bott function. Math. Slovaca, 71(3):757772, 2021.

  • [10]

    Irina Gelbukh. Morse–Bott functions with two critical values on a surface. Czech. Math. J., 71(3):865880, 2021.

  • [11]

    Irina Gelbukh. Criterion for a graph to admit a good orientation in terms of leaf blocks. To appear in Monatsh. Math., 2022.

  • [12]

    Marek Kaluba, Wacław Marzantowicz, and Nelson Silva. On representation of the Reeb graph as a sub-complex of manifold. Topol. Methods Nonlinear Anal., 45(1):287305, 2015.

    • Search Google Scholar
    • Export Citation
  • [13]

    Georgi Khimshiashvili and Dirk Siersma. Remarks on minimal round functions. Banach Center Publications, 62(1):159172, 2004.

  • [14]

    Olexandra Khohliyk and Sergiy Maksymenko. Diffeomorphisms preserving Morse–Bott functions. Indag. Math., 31(2):185203, 2020.

  • [15]

    Naoki Kitazawa. Maps on manifolds onto graphs locally regarded as a quotient map onto a Reeb space and construction problem, 2019. pre-print, 12 pages, arXiv:1909.10315 [math.GT].

    • Search Google Scholar
    • Export Citation
  • [16]

    Naoki Kitazawa. On Reeb graphs induced from smooth functions on 3-dimensional closed orientable manifolds with finitely many singular values, 2019. pre-print, 9 pages, arXiv:1902.08841 [math.GT].

    • Search Google Scholar
    • Export Citation
  • [17]

    Naoki Kitazawa. On Reeb graphs induced from smooth functions on closed or open mani- folds, 2019. pre-print, 18 pages, arXiv:1908.04340 [math.GT].

    • Search Google Scholar
    • Export Citation
  • [18]

    Anna Kravchenko and Sergiy Maksymenko. Automorphisms of Kronrod–Reeb graphs of Morse functions on compact surfaces. Eur. J. Math., 6(1):114131, 2020.

    • Search Google Scholar
    • Export Citation
  • [19]

    Dahisy V.S. Lima, Oziride Manzoli Neto, and Ketty A. de Rezende. On handle theory for Morse–Bott critical manifolds. Geom. Dedicata, 202:265309, 2019.

    • Search Google Scholar
    • Export Citation
  • [20]

    Dmytro P. Lychak and Alexandr O. Prishlyak. Morse functions and fiows on nonorientable surfaces. Methods Funct. Anal. Topol., 15(3):251258, 2009.

    • Search Google Scholar
    • Export Citation
  • [21]

    Sergiy Maksymenko. Homotopy types of stabilizers and orbits of Morse functions on surfaces. Ann. Glob. Anal. Geom., 29:241285, 2006.

  • [22]

    Jose Martínez-Alfaro, Ingrid Sofia Meza-Sarmiento, and Regilene Oliveira. Topological classification of simple Morse Bott functions on surfaces. In Real and Complex Singularities, number 675 in Contemporary Mathematics, pages 165–179. AMS, 2016.

    • Search Google Scholar
    • Export Citation
  • [23]

    Jose Martínez-Alfaro, Ingrid Sofia Meza-Sarmiento, and Regilene D.S. Oliveira. Singu-lar levels and topological invariants of Morse–Bott foliations on non-orientable surfaces. Topol. Methods Nonlinear Anal., 51(1):183213, 2018.

    • Search Google Scholar
    • Export Citation
  • [24]

    Yasutaka Masumoto and Osamu Saeki. Smooth function on a manifold with given Reeb graph. Kyushu J. of Math., 65(1):7584, 2011.

  • [25]

    Łukasz Patryk Michalak. Realization of a graph as the Reeb graph of a Morse function on a manifold. Topol. Methods Nonlinear Anal., 52(2):749762, 2018.

    • Search Google Scholar
    • Export Citation
  • [26]

    Łukasz Patryk Michalak. Combinatorial modifications of Reeb graphs and the realization problem. Discrete Comput. Geom., 65(4):10381060, 2021.

    • Search Google Scholar
    • Export Citation
  • [27]

    George Reeb. Sur les points singuliers d’une forme de Pfaff complétement intégrable ou d’une fonction numérique. C.R.A.S. Paris, 222:847849, 1946.

    • Search Google Scholar
    • Export Citation
  • [28]

    Osamu Saeki. Reeb spaces of smooth functions on manifolds. Int. Math. Res. Not., February 2021.

  • [29]

    Vladimir Vasilievich Sharko. About Kronrod-Reeb graph of a function on a manifold. Meth-ods Funct. Anal. Topol., 12(4):389396, 2006.

  • [30]

    Bin Yu. Lyapunov graphs of nonsingular Smale fiows on S1 × S2. Trans. Amer. Math. Soc., 365(2):767783, 2013.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)