We prove that the number of unit distances among n planar points is at most 1.94 • n4/3, improving on the previous best bound of 8 n4/3. We also give better upper and lower bounds for several small values of n. We also prove some variants of the crossing lemma and improve some constant factors.
E. Ackerman, On topological graphs with at most four crossings per edge, Computational Geometry 85, December 2019, 101574, 35 pages.
M. Ajtai, V. Chvátal, M. M. Newborn and E. Szemerédi, Crossing-free subgraphs, Theory and practice of combinatorics, North-Holland Mathematics Studies, 60 (1982), North- Holland, Amsterdam, 9-12.
P. Brass, W. O. J. Moser, J. Pach, Research Problems in Discrete Geometry, (2005).
Y. Caro, New results on the independence number, Technical report, Tel Aviv University, (1979)
K. B. Chilakamarri and C. R. Mahoney, Maximal and minimal forbidden unit-distance graphs in the plane, Bull. Inst. Combin. Appl., 13:35-43, 1995.
K. L. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir and E. Welzl, Combinatorial complexity bounds for arrangements of curves and spheres, Discrete Comput. Geom., 5:99-160, 1990.
P. Erdős, On sets of distances of n points, Amer. Math. Monthly, 53:248-250,1946.
P. Erdős, On sets of distances of n points in Euclidean space, Magyar Tudományos Akadémia Matematikai Kutató Intézet Közleményei, 5:165-169, 1960.
P. Erdős, D. Hickerson, J. Pach, A problem of Leo Moser about repeated distances on the sphere, Amer. Math. Monthly, 96:569-575, 1989.
N. Frankl and A. Kupavskii, Almost Sharp Bounds on the Number of Discrete Chains in the Plane, in proceedings of the 36th International Symposium on Computational Geometry (SoCG 2020), LIPIcs 164 (2020), 48:1-48:15.
A. Globus and H. Parshall, Small Unit-Distance Graphs in the Plane, preprint, https://arxiv.org/abs/1905.07829.
H. Kaplan, J. Matoušek, M. Sharir and Z. Safernová, Unit distances in three dimensions, Combinat. Probab. Comput, 21:597-610, 2012.
T. Leighton, Complexity Issues in VLSI, Foundations of Computing Series, Cambridge, MA: MIT Press, 1983.
J. Pach, R. Radoičić, G. Tardos and G. Tóth, Improving the crossing lemma by hnding more crossings in sparse graphs, Discrete and Computational Geometry 36 (2006), 527-552.
J. Pach and M. Sharir, On the number of incidences between points and curves, Combinatorics, Probability, and Computing, 7:121-127,1998.
J. Pach and G. Tóth, Graphs drawn with few crossings per edge, Combinatorica 17 (1997) 427-439.
J. Pach, G. Tardos and G. Tóth, Crossings Between Non-homotopic Edges, in: Graph Drawing andNetwork Visualization, 28th International Symposium, GD 2020, Vancouver, BC, Canada, September 16-18, 2020, Revised Selected Papers, 359-371.
E. A. Palsson, S. Senger and A. Sheffer, On the Number of Discrete Chains, preprint, https://arxiv.org/abs/1902.08259.
C. Schade, Exakte maximale Anzahlen gleicher Abstande (1993).
J. Spencer, E. Szemerédi and W. Trotter Jr., Unit Distances in the Euclidean Plane, Graph Theory and Combinatorics (1984), 293-303.
K. J. Swanepoel and P. Valtr, The unit distance problem on spheres, In: ‘Towards a Theory of Geometric Graphs’, J. Pach, ed., Contemporary Mathematics 342, AMS 2004, 273-279.
L. Székely, Crossing numbers and hard Erdős problems in discrete geometry, Combinatorics, Probability and Computing, 6:353-358,1997.
E. Szemerédi and W. T. Trotter, Extremal problems in discrete geometry, Combinatorica, 3:381-392, 1983.
E. Szemerédi, Erdős’s Unit Distance Problem, Open Problems in Mathematics 459-477, 2016.
V. Wei, A lower bound on the stability number of a simple graph, Technical report, Bell Labs, 1981.
J. Zahl, An improved bound on the number of point-surface incidences in three dimensions, Contributions to Discrete Mathematics, 8:100-121, 2013.