Authors:
Péter Ágoston MTA-ELTE Lendület Combinatorial Geometry (CoGe) Research Group, Eötvös Loránd University, Budapest, Hungary
Faculty of Science, Eötvös Loránd University, Budapest, Hungary

Search for other papers by Péter Ágoston in
Current site
Google Scholar
PubMed
Close
and
Dömötör Pálvölgyi MTA-ELTE Lendület Combinatorial Geometry (CoGe) Research Group, Eötvös Loránd University, Budapest, Hungary

Search for other papers by Dömötör Pálvölgyi in
Current site
Google Scholar
PubMed
Close
Restricted access

We prove that the number of unit distances among n planar points is at most 1.94 • n4/3, improving on the previous best bound of 8 n4/3. We also give better upper and lower bounds for several small values of n. We also prove some variants of the crossing lemma and improve some constant factors.

  • [1]

    E. Ackerman, On topological graphs with at most four crossings per edge, Computational Geometry 85, December 2019, 101574, 35 pages.

  • [2]

    M. Ajtai, V. Chvátal, M. M. Newborn and E. Szemerédi, Crossing-free subgraphs, Theory and practice of combinatorics, North-Holland Mathematics Studies, 60 (1982), North- Holland, Amsterdam, 9-12.

    • Search Google Scholar
    • Export Citation
  • [3]

    P. Brass, W. O. J. Moser, J. Pach, Research Problems in Discrete Geometry, (2005).

  • [4]

    Y. Caro, New results on the independence number, Technical report, Tel Aviv University, (1979)

  • [5]

    K. B. Chilakamarri and C. R. Mahoney, Maximal and minimal forbidden unit-distance graphs in the plane, Bull. Inst. Combin. Appl., 13:35-43, 1995.

    • Search Google Scholar
    • Export Citation
  • [6]

    K. L. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir and E. Welzl, Combinatorial complexity bounds for arrangements of curves and spheres, Discrete Comput. Geom., 5:99-160, 1990.

    • Search Google Scholar
    • Export Citation
  • [7]

    P. Erdős, On sets of distances of n points, Amer. Math. Monthly, 53:248-250,1946.

  • [8]

    P. Erdős, On sets of distances of n points in Euclidean space, Magyar Tudományos Akadémia Matematikai Kutató Intézet Közleményei, 5:165-169, 1960.

    • Search Google Scholar
    • Export Citation
  • [9]

    P. Erdős, D. Hickerson, J. Pach, A problem of Leo Moser about repeated distances on the sphere, Amer. Math. Monthly, 96:569-575, 1989.

  • [10]

    N. Frankl and A. Kupavskii, Almost Sharp Bounds on the Number of Discrete Chains in the Plane, in proceedings of the 36th International Symposium on Computational Geometry (SoCG 2020), LIPIcs 164 (2020), 48:1-48:15.

    • Search Google Scholar
    • Export Citation
  • [11]

    A. Globus and H. Parshall, Small Unit-Distance Graphs in the Plane, preprint, https://arxiv.org/abs/1905.07829.

  • [12]

    H. Kaplan, J. Matoušek, M. Sharir and Z. Safernová, Unit distances in three dimensions, Combinat. Probab. Comput, 21:597-610, 2012.

  • [13]

    T. Leighton, Complexity Issues in VLSI, Foundations of Computing Series, Cambridge, MA: MIT Press, 1983.

  • [14]

    J. Pach, R. Radoičić, G. Tardos and G. Tóth, Improving the crossing lemma by hnding more crossings in sparse graphs, Discrete and Computational Geometry 36 (2006), 527-552.

    • Search Google Scholar
    • Export Citation
  • [15]

    J. Pach and M. Sharir, On the number of incidences between points and curves, Combinatorics, Probability, and Computing, 7:121-127,1998.

    • Search Google Scholar
    • Export Citation
  • [16]

    J. Pach and G. Tóth, Graphs drawn with few crossings per edge, Combinatorica 17 (1997) 427-439.

  • [17]

    J. Pach, G. Tardos and G. Tóth, Crossings Between Non-homotopic Edges, in: Graph Drawing andNetwork Visualization, 28th International Symposium, GD 2020, Vancouver, BC, Canada, September 16-18, 2020, Revised Selected Papers, 359-371.

    • Search Google Scholar
    • Export Citation
  • [18]

    E. A. Palsson, S. Senger and A. Sheffer, On the Number of Discrete Chains, preprint, https://arxiv.org/abs/1902.08259.

  • [19]

    C. Schade, Exakte maximale Anzahlen gleicher Abstande (1993).

  • [20]

    J. Spencer, E. Szemerédi and W. Trotter Jr., Unit Distances in the Euclidean Plane, Graph Theory and Combinatorics (1984), 293-303.

  • [21]

    K. J. Swanepoel and P. Valtr, The unit distance problem on spheres, In: ‘Towards a Theory of Geometric Graphs’, J. Pach, ed., Contemporary Mathematics 342, AMS 2004, 273-279.

    • Search Google Scholar
    • Export Citation
  • [22]

    L. Székely, Crossing numbers and hard Erdős problems in discrete geometry, Combinatorics, Probability and Computing, 6:353-358,1997.

  • [23]

    E. Szemerédi and W. T. Trotter, Extremal problems in discrete geometry, Combinatorica, 3:381-392, 1983.

  • [24]

    E. Szemerédi, Erdős’s Unit Distance Problem, Open Problems in Mathematics 459-477, 2016.

  • [25]

    V. Wei, A lower bound on the stability number of a simple graph, Technical report, Bell Labs, 1981.

  • [26]

    J. Zahl, An improved bound on the number of point-surface incidences in three dimensions, Contributions to Discrete Mathematics, 8:100-121, 2013.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The LaTeX template package can be downloaded from HERE

 

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)