Authors:
Péter ÁgostonMTA-ELTE Lendület Combinatorial Geometry (CoGe) Research Group, Eötvös Loránd University, Budapest, Hungary
Faculty of Science, Eötvös Loránd University, Budapest, Hungary

Search for other papers by Péter Ágoston in
Current site
Google Scholar
PubMed
Close
and
Dömötör PálvölgyiMTA-ELTE Lendület Combinatorial Geometry (CoGe) Research Group, Eötvös Loránd University, Budapest, Hungary

Search for other papers by Dömötör Pálvölgyi in
Current site
Google Scholar
PubMed
Close
Restricted access

We prove that the number of unit distances among n planar points is at most 1.94 • n4/3, improving on the previous best bound of 8 n4/3. We also give better upper and lower bounds for several small values of n. We also prove some variants of the crossing lemma and improve some constant factors.

  • [1]

    E. Ackerman, On topological graphs with at most four crossings per edge, Computational Geometry 85, December 2019, 101574, 35 pages.

  • [2]

    M. Ajtai, V. Chvátal, M. M. Newborn and E. Szemerédi, Crossing-free subgraphs, Theory and practice of combinatorics, North-Holland Mathematics Studies, 60 (1982), North- Holland, Amsterdam, 9-12.

    • Search Google Scholar
    • Export Citation
  • [3]

    P. Brass, W. O. J. Moser, J. Pach, Research Problems in Discrete Geometry, (2005).

  • [4]

    Y. Caro, New results on the independence number, Technical report, Tel Aviv University, (1979)

  • [5]

    K. B. Chilakamarri and C. R. Mahoney, Maximal and minimal forbidden unit-distance graphs in the plane, Bull. Inst. Combin. Appl., 13:35-43, 1995.

    • Search Google Scholar
    • Export Citation
  • [6]

    K. L. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir and E. Welzl, Combinatorial complexity bounds for arrangements of curves and spheres, Discrete Comput. Geom., 5:99-160, 1990.

    • Search Google Scholar
    • Export Citation
  • [7]

    P. Erdős, On sets of distances of n points, Amer. Math. Monthly, 53:248-250,1946.

  • [8]

    P. Erdős, On sets of distances of n points in Euclidean space, Magyar Tudományos Akadémia Matematikai Kutató Intézet Közleményei, 5:165-169, 1960.

    • Search Google Scholar
    • Export Citation
  • [9]

    P. Erdős, D. Hickerson, J. Pach, A problem of Leo Moser about repeated distances on the sphere, Amer. Math. Monthly, 96:569-575, 1989.

  • [10]

    N. Frankl and A. Kupavskii, Almost Sharp Bounds on the Number of Discrete Chains in the Plane, in proceedings of the 36th International Symposium on Computational Geometry (SoCG 2020), LIPIcs 164 (2020), 48:1-48:15.

    • Search Google Scholar
    • Export Citation
  • [11]

    A. Globus and H. Parshall, Small Unit-Distance Graphs in the Plane, preprint, https://arxiv.org/abs/1905.07829.

  • [12]

    H. Kaplan, J. Matoušek, M. Sharir and Z. Safernová, Unit distances in three dimensions, Combinat. Probab. Comput, 21:597-610, 2012.

  • [13]

    T. Leighton, Complexity Issues in VLSI, Foundations of Computing Series, Cambridge, MA: MIT Press, 1983.

  • [14]

    J. Pach, R. Radoičić, G. Tardos and G. Tóth, Improving the crossing lemma by hnding more crossings in sparse graphs, Discrete and Computational Geometry 36 (2006), 527-552.

    • Search Google Scholar
    • Export Citation
  • [15]

    J. Pach and M. Sharir, On the number of incidences between points and curves, Combinatorics, Probability, and Computing, 7:121-127,1998.

    • Search Google Scholar
    • Export Citation
  • [16]

    J. Pach and G. Tóth, Graphs drawn with few crossings per edge, Combinatorica 17 (1997) 427-439.

  • [17]

    J. Pach, G. Tardos and G. Tóth, Crossings Between Non-homotopic Edges, in: Graph Drawing andNetwork Visualization, 28th International Symposium, GD 2020, Vancouver, BC, Canada, September 16-18, 2020, Revised Selected Papers, 359-371.

    • Search Google Scholar
    • Export Citation
  • [18]

    E. A. Palsson, S. Senger and A. Sheffer, On the Number of Discrete Chains, preprint, https://arxiv.org/abs/1902.08259.

  • [19]

    C. Schade, Exakte maximale Anzahlen gleicher Abstande (1993).

  • [20]

    J. Spencer, E. Szemerédi and W. Trotter Jr., Unit Distances in the Euclidean Plane, Graph Theory and Combinatorics (1984), 293-303.

  • [21]

    K. J. Swanepoel and P. Valtr, The unit distance problem on spheres, In: ‘Towards a Theory of Geometric Graphs’, J. Pach, ed., Contemporary Mathematics 342, AMS 2004, 273-279.

    • Search Google Scholar
    • Export Citation
  • [22]

    L. Székely, Crossing numbers and hard Erdős problems in discrete geometry, Combinatorics, Probability and Computing, 6:353-358,1997.

  • [23]

    E. Szemerédi and W. T. Trotter, Extremal problems in discrete geometry, Combinatorica, 3:381-392, 1983.

  • [24]

    E. Szemerédi, Erdős’s Unit Distance Problem, Open Problems in Mathematics 459-477, 2016.

  • [25]

    V. Wei, A lower bound on the stability number of a simple graph, Technical report, Bell Labs, 1981.

  • [26]

    J. Zahl, An improved bound on the number of point-surface incidences in three dimensions, Contributions to Discrete Mathematics, 8:100-121, 2013.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
  • Top

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2021  
Web of Science  
Total Cites
WoS
589
Journal Impact Factor 0,739
Rank by Impact Factor Mathematics 229/332
Impact Factor
without
Journal Self Cites
0,710
5 Year
Impact Factor
0,654
Journal Citation Indicator 0,57
Rank by Journal Citation Indicator Mathematics 287/474
Scimago  
Scimago
H-index
26
Scimago
Journal Rank
0,265
Scimago Quartile Score Mathematics (miscellaneous) (Q3)
Scopus  
Scopus
Cite Score
1,3
Scopus
CIte Score Rank
General Mathematics 193/391 (Q2)
Scopus
SNIP
0,746

2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
submission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription fee 2023 Online subsscription: 708 EUR / 860 USD
Print + online subscription: 796 EUR / 970 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2022 35 7 9
May 2022 26 0 0
Jun 2022 22 1 1
Jul 2022 21 0 0
Aug 2022 27 0 0
Sep 2022 15 1 1
Oct 2022 0 0 0