Let X be a smooth projective K3 surface over the complex numbers and let C be an ample curve on X. In this paper we will study the semistability of the Lazarsfeld-Mukai bundle EC,A associated to a line bundle A on C such that |A| is a pencil on C and computes the Clifford index of C. We give a necessary and sufficient condition for EC,A to be semistable.
E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of algebraic curves. Vol. I. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 267, Springer-Verlag, New York, 1985.
C. Ciliberto and G. Pareschi, Pencils of minimal degree on curves on a K3 surface. J. Reine Angew. Math., 46:15–36, 1995.
R. Donagi and D. R. Morrison, Linear systems on K3-sections. . Di_erential Geom., 29(1):49–64, 1989.
M. Green and R. Lazarsfeld, Special divisors on curves on a K3 surface. Invent. Math., 89(2):357–370, 1987.
W. Kenta, Slope semistability of rank 2 Lazarsfeld–Mukai bundles on K3 surfaces and ACM line bundles, https://arxiv.org/pdf/1503.06682.pdf.
R. Lazarsfeld, Brill–Noether–Petri without degenerations. J. Di_erential Geom., 23(3):299–307, 1986.
M. Lelli-Chiesa, Generalized Lazarsfeld–Mukai bundles and a conjecture of Donagi and Morrison. Adv. Math., 268:529–563, 2015.
S. Pal, An elementary proof of Lelli-Chiesa’s theorem on constancy of second coordinate of gonality sequence, https://arxiv.org/pdf/1708.00641.pdf.
B. Saint-Donat, Projective models of K3 surfaces. Amer. J. Math., 96:602–639, 1974.