Author:
Haimiao Chen Department of Mathematics, Beijing Technology and Business University, 11# Fucheng Road, Haidian District, Beijing, China

Search for other papers by Haimiao Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

For each Montesinos knot K, we propose an efficient method to explicitly determine the irreducible SL(2, )-character variety, and show that it can be decomposed as χ0(K)⊔χ1(K)⊔χ2(K)⊔χ'(K), where χ0(K) consists of trace-free characters χ1(K) consists of characters of “unions” of representations of rational knots (or rational link, which appears at most once), χ2(K) is an algebraic curve, and χ'(K) consists of finitely many points when K satisfies a generic condition.

  • [1]

    C. Ashley, J.-P. Burelle and S. Lawton. Rank 1 character varieties of finitely presented groups. Geom. Dedicata 192:1-19, 2018.

  • [2]

    H.-M. Chen. Trace-free SL(2, )-representations of Montesinos links. J. Knot Theor Ramif 27(8):1850050, 2018.

  • [3]

    H.-M. Chen. Character varieties of odd classical pretzel knots. Int. J. Math. 29(9):1850060, 2018.

  • [4]

    H.-M. Chen. Character varieties of even classical pretzel knots. Stud. Sci. Math. Hung. 56(4):510-522, 2019.

  • [5]

    M. Culler and N. Dunfeld. Orderability and Dehn filling. Geom. Topol. 22(3):1405-1457, 2018.

  • [6]

    M. Culler and P.B. Shalen, Varieties of group representations and splittings of 3-manifolds. Ann. Math. (2) 117(1):109-146, 1983.

  • [7]

    S. Friedl and S. Vidussi. A survey of twisted Alexander polynomials. In M. Banagl and D. Vogel, editors, The mathematics of knots, Springer-Verlag Berlin Heidelberg, 2011.

    • Search Google Scholar
    • Export Citation
  • [8]

    K. Ichihara and I.D. Jong. Seifert fibered surgery and Rasmussen invariant. Contemp. Math. 597:321-336, 2013.

  • [9]

    A. Khan and AT. Tran. Classical pretzel knots and left orderability. Int. J. Math. 32(11):2150080, 2021.

  • [10]

    M. L. Macasieb, K. L. Petersen and R. van Luijk. On character varieties of two-bridge knot groups. Proc. Lond. Math. Soc. 103(3):473-507, 2011.

    • Search Google Scholar
    • Export Citation
  • [11]

    V. Muñoz. The SL(2, )-character varieties of torus knots. Revista Mate. Compl. 22(2):489-497, 2009.

  • [12]

    L. Paoluzzi and J. Porti. Non-standard components of the character variety for a family of Montesinos knots. Proc. Lond. Math. Soc. 107(3):655-679, 2013.

    • Search Google Scholar
    • Export Citation
  • [13]

    K. L. Petersen and A. T. Tran. Character varieties of double twist links. Algebraic Geom. Topol. 15:3569-3598, 2015.

  • [14]

    R. Riley. Nonabelian representations of 2-bridge knot groups. Quart. J. Math. Oxford Ser. (2), 35(138):191-208, 1984.

  • [15]

    A. T. Tran. Character varieties of (-2, 2m+1, 2n)-pretzellinks and twisted Whitehead links. J. Knot. Theor. Ramif. 25(2):1650007 2016.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)